
Fixed-Point Designer™

Reference

R2015a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Fixed-Point Designer™ Reference
© COPYRIGHT 2013–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2013 Online only New for Version 4.0 (R2013a)
September 2013 Online only Revised for Version 4.1 (R2013b)
March 2014 Online only Revised for Version 4.2 (R2014a)
October 2014 Online Only Revised for Version 4.3 (R2014b)
March 2015 Online Only Revised for Version 5.0 (R2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


iii

Contents

Apps — Alphabetical List
1

Property Reference
2

fi Object Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
double . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
fimath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
NumericType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
oct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

fipref Object Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
DataTypeOverride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
DataTypeOverrideAppliesTo . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
FimathDisplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
LoggingMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
NumericTypeDisplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
NumberDisplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

quantizer Object Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
DataMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
OverflowMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
RoundingMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9



iv Contents

Functions — Alphabetical List
3

Classes — Alphabetical List
4

Methods — Alphabetical List
5

Glossary
 

Selected Bibliography
A



1

Apps — Alphabetical List



1 Apps — Alphabetical List

1-2

Fixed-Point Converter
Convert MATLAB code to fixed point

Description
The Fixed-Point Converter app converts floating-point MATLAB® code to fixed-point
MATLAB code.

Using the app, you can:

• Propose data types based on simulation range data, static range data, or both.
• Propose fraction lengths based on default word lengths or propose word lengths based

on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• View a histogram of bits used by each variable.
• Specify replacement functions or generate approximate functions for functions in the

original MATLAB algorithm that do not support fixed point.
• Test the numerical behavior of the fixed-point code. You can then compare its

behavior against the floating-point version of your algorithm using either the
Simulation Data Inspector or your own custom plotting functions.

If your end goal is to generate fixed-point C code, use the MATLAB Coder™ app instead.
See “Convert MATLAB Code to Fixed-Point C Code”.

If your end goal is to generate HDL code, use the HDL Coder™ workflow advisor instead.
See “Floating-Point to Fixed-Point Conversion”.

Open the Fixed-Point Converter App

• MATLAB Toolstrip: On the Apps tab, under Code Generation, click the app icon.
• MATLAB command prompt: Enter fixedPointConverter.
• To open an existing Fixed-Point Converter app project, either double-click the .prj

file or open the app and browse to the project file.



 Fixed-Point Converter

1-3

Creating a project or opening an existing project causes any other Fixed-Point
Converter or MATLAB Coder projects to close.

• A MATLAB Coder project opens in the MATLAB Coder app. To convert the project to
a Fixed-Point Converter app project, in the MATLAB Coder app:

1
Click  and select Reopen project as.

2 Select Fixed-Point Converter.

Examples
• “Propose Data Types Based on Simulation Ranges”
• “Propose Data Types Based on Derived Ranges”

More About
• “Automated Conversion”

Programmatic Use

fixedPointConverter opens the Fixed-Point Converter app.

fixedPointConverter -tocode projectname converts the existing project named
projectname.prj to the equivalent script of MATLAB commands. It writes the script
to the Command Window.

fixedPointConverter -tocode projectname -script scriptname converts
the existing project named projectname.prj to the equivalent script of MATLAB
commands. The script is named scriptname.m.

• If scriptname already exists, fixedPointConverter overwrites it.
• The script contains the MATLAB commands to:

• Create a floating-point to fixed-point conversion configuration object that has the
same fixed-point conversion settings as the project.

• Run the fiaccel command to convert the floating-point MATLAB function to a
fixed-point MATLAB function.



1 Apps — Alphabetical List

1-4

Before converting the project to a script, you must complete the Test step of the fixed-
point conversion process.

See Also

Functions
fiaccel

More About
• “Fixed-Point Conversion Workflows”
• “Automated Fixed-Point Conversion”
• “Generated Fixed-Point Code”



2

Property Reference

• “fi Object Properties” on page 2-2
• “fipref Object Properties” on page 2-4
• “quantizer Object Properties” on page 2-7



2 Property Reference

2-2

fi Object Properties

The properties associated with fi objects are described in the following sections in
alphabetical order.

You can set these properties when you create a fi object. For example, to set the stored
integer value of a fi object:

x = fi(0,true,16,15,'int',4);

Note The fimath properties and numerictype properties are also properties of the fi
object. Refer to “fimath Object Properties” and “numerictype Object Properties” for more
information.

bin

Stored integer value of a fi object in binary.

data

Numerical real-world value of a fi object.

dec

Stored integer value of a fi object in decimal.

double

Real-world value of a fi object stored as a MATLAB double.

fimath

fimath properties associated with a fi object. fimath properties determine the rules for
performing fixed-point arithmetic operations on fi objects. fi objects get their fimath
properties from a local fimath object or from default values. The factory-default fimath
values have the following settings:



 fi Object Properties

2-3

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: FullPrecision

To learn more about fimath objects, refer to “fimath Object Construction”. For
more information about each of the fimath object properties, refer to “fimath Object
Properties”.

hex

Stored integer value of a fi object in hexadecimal.

int

Stored integer value of a fi object, stored in a built-in MATLAB integer data type.

NumericType

The numerictype object contains all the data type and scaling attributes of a fixed-point
object. The numerictype object behaves like any MATLAB structure, except that it only
lets you set valid values for defined fields. For a table of the possible settings of each field
of the structure, see “Valid Values for numerictype Object Properties” in the Fixed-Point
Designer User's Guide.

Note You cannot change the numerictype properties of a fi object after fi object
creation.

oct

Stored integer value of a fi object in octal.



2 Property Reference

2-4

fipref Object Properties

The properties associated with fipref objects are described in the following sections in
alphabetical order.

DataTypeOverride

Data type override options for fi objects

• ForceOff — No data type override
• ScaledDoubles — Override with scaled doubles
• TrueDoubles — Override with doubles
• TrueSingles — Override with singles

Data type override only occurs when the fi constructor function is called.

The default value of this property is ForceOff.

DataTypeOverrideAppliesTo

Data type override application to fi objects

• AllNumericTypes — Apply data type override to all fi data types. This setting does
not override builtin integer types.

• Fixed-Point — Apply data type override only to fixed-point data types
• Floating-Point — Apply data type override only to floating-point fi data types

DataTypeOverrideAppliesTo displays only if DataTypeOverride is not set to
ForceOff.

The default value of this property is AllNumericTypes.

FimathDisplay

Display options for the fimath attributes of a fi object

• full — Displays all of the fimath attributes of a fixed-point object
• none — None of the fimath attributes are displayed



 fipref Object Properties

2-5

The default value of this property is full.

LoggingMode

Logging options for operations performed on fi objects

• off — No logging
• on — Information is logged for future operations

Overflows and underflows for assignment, plus, minus, and multiplication operations are
logged as warnings when LoggingMode is set to on.

When LoggingMode is on, you can also use the following functions to return logged
information about assignment and creation operations to the MATLAB command line:

• maxlog — Returns the maximum real-world value
• minlog — Returns the minimum value
• noverflows — Returns the number of overflows
• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to log
information about it. To clear the log, use the function resetlog.

The default value of this property of off.

NumericTypeDisplay

Display options for the numerictype attributes of a fi object

• full — Displays all the numerictype attributes of a fixed-point object
• none — None of the numerictype attributes are displayed.
• short — Displays an abbreviated notation of the fixed-point data type and scaling of

a fixed-point object in the format xWL,FL where

• x is s for signed and u for unsigned.
• WL is the word length.
• FL is the fraction length.

The default value of this property is full.



2 Property Reference

2-6

NumberDisplay

Display options for the value of a fi object

• bin — Displays the stored integer value in binary format
• dec — Displays the stored integer value in unsigned decimal format
• RealWorldValue — Displays the stored integer value in the format specified by the

MATLAB format function
• hex — Displays the stored integer value in hexadecimal format
• int — Displays the stored integer value in signed decimal format
• none — No value is displayed.

The default value of this property is RealWorldValue. In this mode, the value of a fi
object is displayed in the format specified by the MATLAB format function: +, bank,
compact, hex, long, long e, long g, loose, rat, short, short e, or short g. fi
objects in rat format are displayed according to

1

2
fixed-point exponent

stored integer

( )
¥



 quantizer Object Properties

2-7

quantizer Object Properties
The properties associated with quantizer objects are described in the following sections
in alphabetical order.

DataMode

Type of arithmetic used in quantization. This property can have the following values:

• fixed — Signed fixed-point calculations
• float — User-specified floating-point calculations
• double — Double-precision floating-point calculations
• single — Single-precision floating-point calculations
• ufixed — Unsigned fixed-point calculations

The default value of this property is fixed.

When you set the DataMode property value to double or single, the Format property
value becomes read only.

Format

Data format of a quantizer object. The interpretation of this property value depends on
the value of the DataMode property.

For example, whether you specify the DataMode property with fixed- or floating-point
arithmetic affects the interpretation of the data format property. For some DataMode
property values, the data format property is read only.

The following table shows you how to interpret the values for the Format property value
when you specify it, or how it is specified in read-only cases.

DataMode Property Value Interpreting the Format Property Values

fixed or ufixed You specify the Format property value as a vector. The number of bits
for the quantizer object word length is the first entry of this vector,
and the number of bits for the quantizer object fraction length is the
second entry.

The word length can range from 2 to the limits of memory on your PC.
The fraction length can range from 0 to one less than the word length.



2 Property Reference

2-8

DataMode Property Value Interpreting the Format Property Values

float You specify the Format property value as a vector. The number of bits
you want for the quantizer object word length is the first entry of
this vector, and the number of bits you want for the quantizer object
exponent length is the second entry.

The word length can range from 2 to the limits of memory on your PC.
The exponent length can range from 0 to 11.

double The Format property value is specified automatically (is read only)
when you set the DataMode property to double. The value is [64 11],
specifying the word length and exponent length, respectively.

single The Format property value is specified automatically (is read only)
when you set the DataMode property to single. The value is [32 8],
specifying the word length and exponent length, respectively.

OverflowMode

Overflow-handling mode. The value of the OverflowMode property can be one of the
following strings:

• Saturate — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and
smallest representable numbers (as specified by the data format properties), these
values are quantized to the value of either the largest or smallest representable value,
depending on which is closest.

• Wrap — Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest and
smallest representable numbers (as specified by the data format properties), these
values are wrapped back into that range using modular arithmetic relative to the
smallest representable number.

The default value of this property is Saturate. This property becomes a read-only
property when you set the DataMode property to float, double, or single.

Note Floating-point numbers that extend beyond the dynamic range overflow to ±inf.



 quantizer Object Properties

2-9

RoundingMode

Rounding method. The value of the RoundingMode property can be one of the following
strings:

• Ceiling — Round up to the next allowable quantized value.
• Convergent — Round to the nearest allowable quantized value. Numbers that are

exactly halfway between the two nearest allowable quantized values are rounded up
only if the least significant bit (after rounding) would be set to 0.

• Zero — Round negative numbers up and positive numbers down to the next allowable
quantized value.

• Floor — Round down to the next allowable quantized value.
• Nearest — Round to the nearest allowable quantized value. Numbers that are

halfway between the two nearest allowable quantized values are rounded up.

The default value of this property is Floor.





3

Functions — Alphabetical List



3 Functions — Alphabetical List

3-2

abs
Absolute value of fi object

Syntax

c = abs(a)

c = abs(a,T)

c = abs(a,F)

c = abs(a,T,F)

Description

c = abs(a) returns the absolute value of fi object a with the same numerictype
object as a. Intermediate quantities are calculated using the fimath associated with a.
The output fi object c has the same local fimath as a.

c = abs(a,T) returns a fi object with a value equal to the absolute value of a and
numerictype object T. Intermediate quantities are calculated using the fimath
associated with a and the output fi object c has the same local fimath as a. See “Data
Type Propagation Rules” on page 3-3.

c = abs(a,F) returns a fi object with a value equal to the absolute value of a and the
same numerictype object as a. Intermediate quantities are calculated using the fimath
object F. The output fi object c has no local fimath.

c = abs(a,T,F) returns a fi object with a value equal to the absolute value of a and
the numerictype object T. Intermediate quantities are calculated using the fimath
object F. The output fi object c has no local fimath. See “Data Type Propagation Rules”
on page 3-3.

Note: When the Signedness of the input numerictype object T is Auto, the abs
function always returns an Unsigned fi object.

abs only supports fi objects with [Slope Bias] scaling when the bias is zero and the
fractional slope is one. abs does not support complex fi objects of data type Boolean.



 abs

3-3

When the object a is real and has a signed data type, the absolute value of the most
negative value is problematic since it is not representable. In this case, the absolute
value saturates to the most positive value representable by the data type if the
OverflowAction property is set to saturate. If OverflowAction is wrap, the
absolute value of the most negative value has no effect.

Data Type Propagation Rules
For syntaxes for which you specify a numerictype object T, the abs function follows the
data type propagation rules listed in the following table. In general, these rules can be
summarized as “floating-point data types are propagated.” This allows you to write code
that can be used with both fixed-point and floating-point inputs.

Data Type of Input fi Object a Data Type of numerictype
object T

Data Type of Output c

fi Fixed fi Fixed Data type of numerictype
object T

fi ScaledDouble fi Fixed ScaledDouble with
properties of numerictype
object T

fi double fi Fixed fi double
fi single fi Fixed fi single
Any fi data type fi double fi double
Any fi data type fi single fi single

Examples

Example 1

The following example shows the difference between the absolute value results for the
most negative value representable by a signed data type when OverflowAction is
saturate or wrap.

P = fipref('NumericTypeDisplay','full',...

           'FimathDisplay','full');

a = fi(-128) 



3 Functions — Alphabetical List

3-4

a =

 

  -128

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

abs(a) 

ans =

 

  127.9961

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

a.OverflowAction = 'Wrap' 

a =

 

  -128

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

        RoundingMethod: Nearest

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

  abs(a) 

ans =

 

  -128

          DataTypeMode: Fixed-point: binary point scaling



 abs

3-5

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

        RoundingMethod: Nearest

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

Example 2

The following example shows the difference between the absolute value results for
complex and real fi inputs that have the most negative value representable by a signed
data type when OverflowAction is wrap.

re = fi(-1,1,16,15)

re =

 

    -1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

im = fi(0,1,16,15)

im =

 

     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

a = complex(re,im)

a =

 

    -1

          DataTypeMode: Fixed-point: binary point scaling



3 Functions — Alphabetical List

3-6

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

abs(a,re.numerictype,fimath('OverflowAction','Wrap'))

ans =

 

    1.0000

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

abs(re,re.numerictype,fimath('OverflowAction','Wrap'))

ans =

 

    -1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

Example 3

The following example shows how to specify numerictype and fimath objects as
optional arguments to control the result of the abs function for real inputs. When
you specify a fimath object as an argument, that fimath object is used to compute
intermediate quantities, and the resulting fi object has no local fimath.

a = fi(-1,1,6,5,'OverflowAction','Wrap')

a =

 

    -1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 6

        FractionLength: 5



 abs

3-7

        RoundingMethod: Nearest

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

abs(a)

ans =

 

    -1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 6

        FractionLength: 5

        RoundingMethod: Nearest

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

f = fimath('OverflowAction','Saturate')

f =

 

        RoundingMethod: Nearest

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

abs(a,f)

ans =

 

    0.9688

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 6

        FractionLength: 5

t = numerictype(a.numerictype, 'Signed', false)



3 Functions — Alphabetical List

3-8

t =

 

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 6

        FractionLength: 5

abs(a,t,f)

ans =

 

     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 6

        FractionLength: 5

Example 4

The following example shows how to specify numerictype and fimath objects as
optional arguments to control the result of the abs function for complex inputs.

a = fi(-1-i,1,16,15,'OverflowAction','Wrap')

a =

 

  -1.0000 - 1.0000i

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

        RoundingMethod: Nearest

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

t = numerictype(a.numerictype,'Signed',false)

t =



 abs

3-9

 

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 16

        FractionLength: 15

abs(a,t)

ans =

 

    1.4142

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 16

        FractionLength: 15

        RoundingMethod: Nearest

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

f = fimath('OverflowAction','Saturate','SumMode',...

        'KeepLSB','SumWordLength',a.WordLength,...

        'ProductMode','specifyprecision',...

        'ProductWordLength',a.WordLength,...

        'ProductFractionLength',a.FractionLength)

f =

 

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: SpecifyPrecision

     ProductWordLength: 16

 ProductFractionLength: 15

               SumMode: KeepLSB

         SumWordLength: 16

         CastBeforeSum: true

abs(a,t,f)

ans =



3 Functions — Alphabetical List

3-10

 

    1.4142

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 16

        FractionLength: 15

More About
Algorithms

The absolute value y of a real input a is defined as follows:
y = a if a >= 0
y = -a if a < 0

The absolute value y of a complex input a is related to its real and imaginary parts as
follows:
y = sqrt(real(a)*real(a) + imag(a)*imag(a))

The abs function computes the absolute value of complex inputs as follows:

1 Calculate the real and imaginary parts of a using the following equations:
re = real(a)

im = imag(a)

2 Compute the squares of re and im using one of the following objects:

• The fimath object F if F is specified as an argument.
• The fimath associated with a if F is not specified as an argument.

3 Cast the squares of re and im to unsigned types if the input is signed.
4 Add the squares of re and im using one of the following objects:

• The fimath object F if F is specified as an argument.
• The fimath object associated with a if F is not specified as an argument.

5 Compute the square root of the sum computed in step four using the sqrt function
with the following additional arguments:

• The numerictype object T if T is specified, or the numerictype object of a
otherwise.



 abs

3-11

• The fimath object F if F is specified, or the fimath object associated with a
otherwise.

Note: Step three prevents the sum of the squares of the real and imaginary components
from being negative. This is important because if either re or im has the maximum
negative value and the OverflowAction property is set to wrap then an error will occur
when taking the square root in step five.



3 Functions — Alphabetical List

3-12

accumneg
Subtract two fi objects or values

Syntax

c = accumneg(a,b)

c = accumneg(a,b,RoundingMethod)

c = accumneg(a,b,RoundingMethod,OverflowAction)

Description

c = accumneg(a,b) subtracts b from a using a’s data type. b is cast into a’s data type.
If a is a fi object, the default 'Floor’ rounding method and default 'Wrap' overflow
action are used. The fimath properties of a and b are ignored.

c = accumneg(a,b,RoundingMethod) uses the rounding method specified in
RoundingMethod.

c = accumneg(a,b,RoundingMethod,OverflowAction) uses the overflow action
specified in OverflowAction.

Input Arguments

a

Number from which to subtract. a can be fi object or double, single, logical, or integer
value. The data type of a is used to compute the output data type.

b

Number to subtract. b can be fi object or double, single, logical, or integer value. .

RoundingMethod

Rounding method to use if a is a fi object. Valid values are 'Ceiling', 'Convergent',
'Floor', 'Nearest', 'Round' and 'Zero'.



 accumneg

3-13

Default: Floor

OverflowAction

Overflow action to take if a is a fi object. Valid values are 'Saturate' and 'Wrap',

Default: Wrap

Output Arguments

c

Result of subtracting input b from input a.

Examples

Subtract fi numbers using default accumneg settings and then, using non-default
rounding method and overflow action.

a = fi(pi,1,16,13);

b = fi(1.5,1,16,14);

subtr_default  = accumneg(a,b);

subtr_custom = accumneg(a,b,'Nearest','Saturate');

See Also
accumpos



3 Functions — Alphabetical List

3-14

accumpos
Add two fi objects or values

Syntax

c = accumpos(a,b)

c = accumpos(a,b,RoundingMethod)

c = accumpos(a,b,RoundingMethod,OverflowAction)

Description

c = accumpos(a,b) adds a and b using the a’s data type. b is cast into a’s data type.
If a is a fi object, the default 'Floor’ rounding method and default 'Wrap' overflow
action are used. The fimath properties of a and b are ignored.

c = accumpos(a,b,RoundingMethod) uses the rounding method specified in
RoundingMethod.

c = accumpos(a,b,RoundingMethod,OverflowAction) uses the overflow action
specified in OverflowAction.

Input Arguments

a

Number to add. a can be fi object or double, single, logical, or integer value. The data
type of a is used to compute the output data type.

b

Number to add. b can be fi object or double, single, logical, or integer value.

RoundingMethod

Rounding method to use if a is a fi object. Valid values are 'Ceiling', 'Convergent',
'Floor', 'Nearest', 'Round', and 'Zero'.



 accumpos

3-15

Default: Floor

OverflowAction

Overflow action to take if a is a fi object. Valid values are 'Saturate' and 'Wrap'.

Default: Wrap

Output Arguments

c

Result of adding the a and b inputs.

Examples

Add two fi numbers using default accumpos settings and then, using nondefault
rounding method and overflow action.

a = fi(pi,1,16,13);

b = fi(1.5,1,16,14);

add_default  = accumpos(a,b);

add_custom = accumpos(a,b,'Nearest','Saturate');

See Also
accumneg



3 Functions — Alphabetical List

3-16

add

Add two objects using fimath object

Syntax

c = add(F,a,b)

Description

c = add(F,a,b) adds objects a and b using fimath object F. This is helpful in cases
when you want to override the fimath objects of a and b, or if the fimath properties
associated with a and b are different. The output fi object c has no local fimath.

a and b must both be fi objects and must have the same dimensions unless one is a
scalar. If either a or b is scalar, then c has the dimensions of the nonscalar object.

Examples

In this example, c is the 32-bit sum of a and b with fraction length 16:

a = fi(pi);

b = fi(exp(1));

F = fimath('SumMode','SpecifyPrecision',...

  'SumWordLength',32,'SumFractionLength',16);

c = add(F,a,b) 

c =

 

    5.8599

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 32

        FractionLength: 16



 add

3-17

More About

Algorithms

c = add(F,a,b) is similar to

a.fimath = F;

b.fimath = F;

c = a + b

c = 

    5.8599

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 32

        FractionLength: 16

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: SpecifyPrecision

         SumWordLength: 32

     SumFractionLength: 16

         CastBeforeSum: true

but not identical. When you use add, the fimath properties of a and b are not modified,
and the output fi object c has no local fimath. When you use the syntax c = a + b,
where a and b have their own fimath objects, the output fi object c gets assigned the
same fimath object as inputs a and b. See “fimath Rules for Fixed-Point Arithmetic” in
the Fixed-Point Designer User's Guide for more information.

See Also
divide | fi | fimath | mpy | mrdivide | numerictype | rdivide | sub | sum



3 Functions — Alphabetical List

3-18

all
Determine whether all array elements are nonzero

Description

This function accepts fi objects as inputs.

Refer to the MATLAB all reference page for more information.



 and

3-19

and
Find logical AND of array or scalar inputs

Description

This function accepts fi objects as inputs.

Refer to the MATLAB and reference page for more information.



3 Functions — Alphabetical List

3-20

any
Determine whether any array elements are nonzero

Description

This function accepts fi objects as inputs.

Refer to the MATLAB any reference page for more information.



 area

3-21

area
Create filled area 2-D plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB area reference page for more information.



3 Functions — Alphabetical List

3-22

assignmentquantizer
Assignment quantizer object of fi object

Syntax

q = assignmentquantizer(a)

Description

q = assignmentquantizer(a) returns the quantizer object q that is used in
assignment operations for the fi object a.

See Also
quantize | quantizer



 atan2

3-23

atan2
Four-quadrant inverse tangent of fixed-point values

Syntax

z = atan2(y,x)

Description

z = atan2(y,x) returns the four-quadrant arctangent of fi input y/x using a table-
lookup algorithm.

Input Arguments

y,x

y and x can be real-valued, signed or unsigned scalars, vectors, matrices, or N-
dimensional arrays containing fixed-point angle values in radians. The lengths of y and x
must be the same. If they are not the same size, at least one input must be a scalar value.
Valid data types of y and x are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Output Arguments

z

z is the four-quadrant arctangent of y/x. The numerictype of z depends on the signedness
of y and x:



3 Functions — Alphabetical List

3-24

• If either y or x is signed, z is a signed, fixed-point number in the range [–pi,pi]. It has
a 16-bit word length and 13-bit fraction length (numerictype(1,16,13)).

• If both y and x are unsigned, z is an unsigned, fixed-point number in
the range [0,pi/2]. It has a 16-bit word length and 15-bit fraction length
(numerictype(0,16,15)).

This arctangent calculation is accurate only to within the top 16 most-significant bits of
the input.

Examples

Calculate the arctangent of unsigned and signed fixed-point input values. The first
example uses unsigned, 16-bit word length values. The second example uses signed, 16-
bit word length values.

y = fi(0.125,0,16);

x = fi(0.5,0,16);  

z = atan2(y,x)

 

z =

 

    0.2450

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 16

        FractionLength: 15 

y = fi(-0.1,1,16);

x = fi(-0.9,1,16);  

z = atan2(y,x)

z =

 

   -3.0309

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13



 atan2

3-25

More About

Four-Quadrant Arctangent

The four-quadrant arctangent is defined as follows, with respect to the atan function:

atan2

atan             

atan       

( , )y x

y

x
x

y

x

=

Ê
ËÁ

ˆ
¯̃

>

+ Ê
Ë
Á

ˆ
¯
˜

0

p yy x

y

x
y x

≥ <

- + Ê
ËÁ

ˆ
¯̃

< <

0 0

0 0

2

,

,p

p

atan     

                         

                      

               

y x

y x

> =

- < =

0 0

2
0 0

0

,

,
p

            y x= =

Ï

Ì

Ô
Ô
Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô
Ô
Ô 0 0,

Algorithms

The atan2 function computes the four-quadrant arctangent of fixed-point inputs using
an 8-bit lookup table as follows:

1 Divide the input absolute values to get an unsigned, fractional, fixed-point, 16-bit
ratio between 0 and 1. The absolute values of y and x determine which value is the
divisor.

The signs of the y and x inputs determine in what quadrant their ratio lies. The
input with the larger absolute value is used as the denominator, thus producing a
value between 0 and 1.



3 Functions — Alphabetical List

3-26

2 Compute the table index, based on the 16-bit, unsigned, stored integer value:

a Use the 8 most-significant bits to obtain the first value from the table.
b Use the next-greater table value as the second value.

3 Use the 8 least-significant bits to interpolate between the first and second values
using nearest neighbor linear interpolation. This interpolation produces a value in
the range [0, pi/4).

4 Perform octant correction on the resulting angle, based on the values of the original y
and x inputs.

fimath Propagation Rules

The atan2 function ignores and discards any fimath attached to the inputs. The output,
z, is always associated with the default fimath.



 atan2

3-27

See Also
angle | atan2 | cordicatan2 | cos | sin



3 Functions — Alphabetical List

3-28

autofixexp
Automatically change scaling of fixed-point data types

Syntax

autofixexp

Description

The autofixexp script automatically changes the scaling for model objects that specify
fixed-point data types. However, if an object's Lock output data type setting against
changes by the fixed-point tools parameter is selected, the script refrains from
scaling that object.

This script collects range data for model objects, either from design minimum and
maximum values that objects specify explicitly, or from logged minimum and maximum
values that occur during simulation. Based on these values, the tool changes the scaling
of fixed-point data types in a model so as to maximize precision and cover the range.

You can specify design minimum and maximum values for model objects using
parameters typically titled Output minimum and Output maximum. See “Blocks
That Allow Signal Range Specification” for a list of Simulink® blocks that permit you to
specify these values. In the autoscaling procedure that the autofixexp script executes,
design minimum and maximum values take precedence over the simulation range.

If you intend to scale fixed-point data types using simulation minimum and maximum
values, the script yields meaningful results when exercising the full range of values
over which your design is meant to run. Therefore, the simulation you run prior to
using autofixexp must simulate your design over its full intended operating range.
It is especially important that you use simulation inputs with appropriate speed and
amplitude profiles for dynamic systems. The response of a linear dynamic system is
frequency dependent. For example, a bandpass filter will show almost no response to
very slow and very fast sinusoid inputs, whereas the signal of a sinusoid input with a
frequency in the passband will be passed or even significantly amplified. The response of
nonlinear dynamic systems can have complicated dependence on both the signal speed
and amplitude.



 autofixexp

3-29

Note: If you already know the simulation range you need to cover, you can use an
alternate autoscaling technique described in the fixptbestprec reference page.

To control the parameters associated with automatic scaling, such as safety margins, use
the Fixed-Point Tool.

For more information, see “Fixed-Point Tool”.

To learn how to use the Fixed-Point Tool, refer to “Propose Fraction Lengths Using
Simulation Range Data”.

See Also
fxptdlg



3 Functions — Alphabetical List

3-30

bar
Create vertical bar graph

Description

This function accepts fi objects as inputs.

Refer to the MATLAB bar reference page for more information.



 barh

3-31

barh
Create horizontal bar graph

Description

This function accepts fi objects as inputs.

Refer to the MATLAB barh reference page for more information.



3 Functions — Alphabetical List

3-32

bin
Binary representation of stored integer of fi object

Syntax

bin(a)

Description

bin(a) returns the stored integer of fi object a in unsigned binary format as a string.
bin(a) is equivalent to a.bin.

Fixed-point numbers can be represented as

real world value stored integerfraction length
- = ¥

-
2

or, equivalently as

real world value slope stored integer bias- = ¥ +( )

The stored integer is the raw binary number, in which the binary point is assumed to be
at the far right of the word.

Examples

The following code

a = fi([-1 1],1,8,7);

y = bin(a)

z = a.bin

returns

y = 



 bin

3-33

  10000000   01111111

z = 

  10000000   01111111

See Also
dec | hex | storedInteger | oct



3 Functions — Alphabetical List

3-34

bin2num
Convert two's complement binary string to number using quantizer object

Syntax

y = bin2num(q,b)

Description

y = bin2num(q,b) uses the properties of quantizer object q to convert binary string
b to numeric array y. When b is a cell array containing binary strings, y is a cell array
of the same dimension containing numeric arrays. The fixed-point binary representation
is two's complement. The floating-point binary representation is in IEEE® Standard 754
style.

bin2num and num2bin are inverses of one another. Note that num2bin always returns
the strings in a column.

Examples

Create a quantizer object and an array of numeric strings. Convert the numeric strings
to binary strings, then use bin2num to convert them back to numeric strings.

q=quantizer([4 3]);

[a,b]=range(q);

x=(b:-eps(q):a)';

b = num2bin(q,x) 

b = 

0111    

0110    

0101    

0100    

0011    

0010    



 bin2num

3-35

0001    

0000    

1111    

1110    

1101    

1100    

1011    

1010    

1001    

1000    

bin2num performs the inverse operation of num2bin.

y=bin2num(q,b) 

y = 

    0.8750 

    0.7500 

    0.6250 

    0.5000 

    0.3750 

    0.2500 

    0.1250 

         0 

   -0.1250 

   -0.2500 

   -0.3750 

   -0.5000 

   -0.6250 

   -0.7500 

   -0.8750 

   -1.0000 

See Also
hex2num | num2bin | num2hex | num2int



3 Functions — Alphabetical List

3-36

bitand
Bitwise AND of two fi objects

Syntax

c = bitand(a, b)

Description

c = bitand(a, b) returns the bitwise AND of fi objects a and b.

The numerictype properties associated with a and b must be identical. If both inputs
have a local fimath object, the fimath objects must be identical. If the numerictype
is signed, then the bit representation of the stored integer is in two's complement
representation.

a and b must have the same dimensions unless one is a scalar.

bitand only supports fi objects with fixed-point data types.

See Also
bitcmp | bitget | bitor | bitset | bitxor



 bitandreduce

3-37

bitandreduce
Reduce consecutive slice of bits to one bit by performing bitwise AND operation

Syntax

c = bitandreduce(a)

c = bitandreduce(a, lidx)

c = bitandreduce(a, lidx, ridx)

Description

c = bitandreduce(a) performs a bitwise AND operation on the entire set of bits in the
fixed-point input, a, and returns the result as an unsigned integer of word length 1.

c = bitandreduce(a, lidx) performs a bitwise AND operation on a consecutive range
of bits, starting at position lidx and ending at the LSB (the bit at position 1).

c = bitandreduce(a, lidx, ridx) performs a bitwise AND operation on a
consecutive range of bits, starting at position lidx and ending at position ridx.

The bitandreduce arguments must satisfy the following condition:
a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise AND Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);

disp(bin(a))

01001001

Perform a bitwise AND operation on the entire set of bits in a.

c = bitandreduce(a)



3 Functions — Alphabetical List

3-38

c = 

     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

Because the bits of a do not all have a value of 1, the output has a value of 0.

Perform Bitwise AND Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a = fi([12, 4, 8, 15],0,8,0);

disp(bin(a))

00001100   00000100   00001000   00001111

Perform a bitwise AND operation on the bits of each element of a, starting at position
fi(4).

c = bitandreduce(a, fi(4))

c = 

     0     0     0     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

The only element in output c with a value of 1 is the 4th element. This is because it is the
only element of a that had only 1's between positions fi(4) and 1.

Perform Bitwise AND Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7, 8, 1; 5, 9, 5; 8, 37, 2], 0, 8, 0);

disp(bin(a))



 bitandreduce

3-39

00000111   00001000   00000001

00000101   00001001   00000101

00001000   00100101   00000010

Perform a bitwise AND operation on the bits of each element of matrix a beginning at
position 3 and ending at position 1.

c = bitandreduce(a, 3, 1)

c = 

     1     0     0

     0     0     0

     0     0     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

There is only one element in output c with a value of 1. This condition occurs because the
corresponding element in a is the only element with only 1's between positions 3 and 1.

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

bitandreduce supports both signed and unsigned inputs with arbitrary scaling. The
sign and scaling properties do not affect the result type and value. bitandreduce
performs the operation on a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. lidx represents the position
in the range closest to the MSB.



3 Functions — Alphabetical List

3-40

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position
in the range closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output Arguments

c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-
point fi objects. c is unsigned with word length 1.

See Also
bitconcat | bitorreduce | bitsliceget | bitxorreduce



 bitcmp

3-41

bitcmp
Bitwise complement of fi object

Syntax

c = bitcmp(a)

Description

c = bitcmp(a) returns the bitwise complement of fi object a. If a has a signed
numerictype, the bit representation of the stored integer is in two's complement
representation.

bitcmp only supports fi objects with fixed-point data types. a can be a scalar fi object
or a vector fi object.

Examples

This example shows how to get the bitwise complement of a fi object. Consider the
following unsigned fixed-point fi object with a value of 10, word length 4, and fraction
length 0:

a = fi(10,0,4,0);

disp(bin(a))

1010

Complement the values of the bits in a:

c = bitcmp(a);

disp(bin(c))

0101

See Also
bitand | bitget | bitor | bitset | bitxor



3 Functions — Alphabetical List

3-42

bitconcat
Concatenate bits of fi objects

Syntax
y = bitconcat(a)

y = bitconcat (a, b, ...)

Description
y = bitconcat(a) concatenates the bits of the elements of fixed-point fi input array,
a.

y = bitconcat (a, b, ...) concatenates the bits of the fixed–point fi inputs.

Examples

Concatenate the Elements of a Vector

Create a fixed-point vector.

a = fi([1,2,5,7],0,4,0);

disp(bin(a))

0001   0010   0101   0111

Concatenate the bits of the elements of a.

y = bitconcat(a)

y = 

        4695

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 16

        FractionLength: 0



 bitconcat

3-43

disp(bin(y))

0001001001010111

The word length of the output, y, equals the sum of the word lengths of each element of
a.

Concatenate the Bits of Two fi Objects

Create two fixed-point numbers.

a = fi(5,0,4,0);

disp(bin(a))

0101

b = fi(10,0,4,0);

disp(bin(b))

1010

Concatenate the bits of the two inputs.

y = bitconcat(a,b)

y = 

    90

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 8

        FractionLength: 0

disp(bin(y))

01011010

The output, y, is unsigned with a word length equal to the sum of the word lengths of the
two inputs, and a fraction length of 0.

Perform Element-by-Element Concatenation of Two Vectors

When a and b are both vectors of the same size, bitconcat performs element-wise
concatenation of the two vectors and returns a vector.



3 Functions — Alphabetical List

3-44

Create two fixed-point vectors of the same size.

a = fi([1,2,5,7],0,4,0);

disp(bin(a))

0001   0010   0101   0111

b = fi([7,4,3,1],0,4,0);

disp(bin(b))

0111   0100   0011   0001

Concatenate the elements of a and b.

y = bitconcat(a,b)

y = 

    23    36    83   113

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 8

        FractionLength: 0

disp(bin(y))

00010111   00100100   01010011   01110001

The output, y, is a vector of the same length as the input vectors, and with a word length
equal to the sum of the word lenghts of the two input vectors.

Perform Element-by-Element Concatenation of Two Matrices

When the inputs are both matrices of the same size, bitconcat performs element-wise
concatenation of the two matrices and returns a matrix of the same size.

Create two fixed-point matrices.

a = fi([1,2,5;7,4,5;3,1,12],0,4,0);

disp(bin(a))

0001   0010   0101

0111   0100   0101



 bitconcat

3-45

0011   0001   1100

b = fi([6,1,7;7,8,1;9,7,8],0,4,0);

disp(bin(b))

0110   0001   0111

0111   1000   0001

1001   0111   1000

Perform element-by-element concatenation of the bits of a and b.

y = bitconcat(a,b)

y = 

    22    33    87

   119    72    81

    57    23   200

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 8

        FractionLength: 0

disp(bin(y))

00010110   00100001   01010111

01110111   01001000   01010001

00111001   00010111   11001000

The output, y, is a matrix with word length equal to the sum of the word lengths of a and
b.

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point
fi objects. bitconcat accepts varargin number of inputs for concatenation.

Data Types: fixed-point fi



3 Functions — Alphabetical List

3-46

b — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point
fi objects. If b is nonscalar, it must have the same dimension as the other inputs.

Data Types: fixed-point fi

Output Arguments

y — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of unsigned
fixed-point fi objects.

The output array has word length equal to the sum of the word lengths of the inputs
and a fraction length of zero. The bit representation of the stored integer is in two's
complement representation. Scaling does not affect the result type and value.

If the inputs are all scalar, then bitconcat concatenates the bits of the inputs and
returns a scalar.

If the inputs are all arrays of the same size, then bitconcat performs element-wise
concatenation of the bits and returns an array of the same size.

See Also
bitand | bitcmp | bitget | bitor | bitreplicate | bitset | bitsliceget |
bitxor



 bitget

3-47

bitget
Get bits at certain positions

Syntax

c = bitget(a, bit)

Description

c = bitget(a, bit) returns the values of the bits at the positions specified by bit in
a as unsigned integers of word length 1.

Examples

Get Bit When Input and Index Are Both Scalar

Consider the following unsigned fixed-point fi number with a value of 85, word length 8,
and fraction length 0:

a = fi(85,0,8,0);

disp(bin(a))

01010101

Get the binary representation of the bit at position 4:

c = bitget(a,4);

bitget returns the bit at position 4 in the binary representation of a.

Get Bit When Input Is a Matrix and the Index Is a fi

Begin with a signed fixed-point 3-by-3 matrix with word length 4 and fraction length 0.

a = fi([2 3 4;6 8 2;3 5 1],0,4,0);

disp(bin(a))

0010   0011   0100

0110   1000   0010



3 Functions — Alphabetical List

3-48

0011   0101   0001

Get the binary representation of the bits at a specified position.

c = bitget(a,fi(2))

c = 

     1     1     0

     1     0     1

     1     0     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

MATLAB® returns a matrix of the bits in position fi(2) of a. The output matrix has the
same dimensions as a, and a word length of 1.

Get Bit When Both Input and Index Are Vectors

Begin with a signed fixed-point vector with word length 16, fraction length 4.

a = fi([86 6 53 8 1],0,16,4);

disp(bin(a))

0000010101100000   0000000001100000   0000001101010000   0000000010000000   0000000000010000

Create a vector that specifies the positions of the bits to get.

bit = [1,2,5,7,4]

bit =

     1     2     5     7     4

Get the binary representation of the bits of a at the positions specified in bit.

c = bitget(a,bit)

c = 



 bitget

3-49

     0     0     1     0     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

bitget returns a vector of the bits of a at the positions specified in bit. The output
vector has the same length as inputs, a and bit, and a word length of 1.

Get Bit When Input Is Scalar and Index Is a Vector

Create a default fi object with a value of pi.

a = fi(pi);

disp(bin(a))

0110010010001000

The default object is signed with a word length of 16.

Create a vector of the positions of the bits you want to get in a, and get the binary
representation of those bits.

bit = fi([15,3,8,2]);

c = bitget(a,bit)

c = 

     1     0     1     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

MATLAB® returns a vector of the bits in a at the positions specified by the index vector,
bit.

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array



3 Functions — Alphabetical List

3-50

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-
point fi objects. If a and bit are both nonscalar, they must have the same dimension.
If a has a signed numerictype, the bit representation of the stored integer is in two's
complement representation.

Data Types: fixed-point fi

bit — Bit index
scalar | vector | matrix | multidimensional array

Bit index, specified as a scalar, vector, matrix or multidimensional array of fi objects or
built-in data types. If a and bit are both nonscalar, they must have the same dimension.
bit must contain integer values between 1 and the word length of a, inclusive. The LSB
(right-most bit) is specified by bit index 1 and the MSB (left-most bit) is specified by the
word length of a. bit does not need to be a vector of sequential bit positions; it can also
be a variable index value.

a = fi(pi,0,8);

a.bin

11001001

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output Arguments

c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as an unsigned scalar, vector, matrix, or multidimensional array
with WordLength 1.



 bitget

3-51

If a is an array and bit is a scalar, c is an unsigned array with word length 1. This
unsigned array comprises the values of the bits at position bit in each fixed-point
element in a.

If a is a scalar and bit is an array, c is an unsigned array with word length 1. This
unsigned array comprises the values of the bits in a at the positions specified in bit.

See Also
bitand | bitcmp | bitor | bitset | bitxor



3 Functions — Alphabetical List

3-52

bitor
Bitwise OR of two fi objects

Syntax

c = bitor(a,b)

Description

c = bitor(a,b) returns the bitwise OR of fi objects a and b. The output is determined
as follows:

• Elements in the output array c are assigned a value of 1 when the corresponding bit
in either input array has a value of 1.

• Elements in the output array c are assigned a value of 0 when the corresponding bit
in both input arrays has a value of 0.

The numerictype properties associated with a and b must be identical. If both inputs
have a local fimath, their local fimath properties must be identical. If the numerictype
is signed, then the bit representation of the stored integer is in two's complement
representation.

a and b must have the same dimensions unless one is a scalar.

bitor only supports fi objects with fixed-point data types.

Examples

The following example finds the bitwise OR of fi objects a and b.

a = fi(-30,1,6,0);

b = fi(12, 1, 6, 0);

c = bitor(a,b)

c =

 



 bitor

3-53

   -18

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 6

        FractionLength: 0

You can verify the result by examining the binary representations of a, b and c.

binary_a = a.bin

binary_b = b.bin

binary_c = c.bin

binary_a =

100010

binary_b =

001100

binary_c =

101110

See Also
bitand | bitcmp | bitget | bitset | bitxor



3 Functions — Alphabetical List

3-54

bitorreduce
Reduce consecutive slice of bits to one bit by performing bitwise OR operation

Syntax

c = bitorreduce(a)

c = bitorreduce(a, lidx)

c = bitorreduce(a, lidx, ridx)

Description

c = bitorreduce(a) performs a bitwise OR operation on the entire set of bits in the
fixed-point input, a, and returns the result as an unsigned integer of word length 1.

c = bitorreduce(a, lidx) performs a bitwise OR operation on a consecutive range of
bits, starting at position lidx and ending at the LSB (the bit at position 1).

c = bitorreduce(a, lidx, ridx) performs a bitwise OR operation on a consecutive
range of bits, starting at position lidx and ending at position ridx.

The bitorreduce arguments must satisfy the following condition:
a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise OR Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);

disp(bin(a))

01001001

Perform a bitwise OR operation on the entire set of bits in a.

c = bitorreduce(a)



 bitorreduce

3-55

c = 

     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

Because there is at least one bit in a with a value of 1, the output has a value of 1.

Perform Bitwise OR Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a=fi([12,4,8,15],0,8,0);

disp(bin(a))

00001100   00000100   00001000   00001111

Perform a bitwise OR operation on the bits of each element of a, starting at position
fi(4).

c=bitorreduce(a,fi(4))

c = 

     1     1     1     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

All of the entries of output c have a value of 1 because all of the entries of a have at least
one bit with a value of 1 between the positions fi(4) and 1.

Perform Bitwise OR Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7,8,1;5,9,5;8,37,2],0,8,0);

disp(bin(a))



3 Functions — Alphabetical List

3-56

00000111   00001000   00000001

00000101   00001001   00000101

00001000   00100101   00000010

Perform a bitwise OR operation on the bits of each element of matrix a beginning at
position 5, and ending at position 2.

c = bitorreduce(a,5,2)

c = 

     1     1     0

     1     1     1

     1     1     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

There is only one element in output c that does not have a value of 1. This condition
occurs because the corresponding element in a is the only element of a that does not have
any bits with a value of 1 between positions 5 and 2.

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point
fi objects.

bitorreduce supports both signed and unsigned inputs with arbitrary scaling. The sign
and scaling properties do not affect the result type and value. bitorreduce performs
the operation on a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar



 bitorreduce

3-57

Start position of range specified as a scalar of built-in type. lidx represents the position
in the range closest to the MSB.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position
in the range closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output Arguments

c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-
point fi objects. c is unsigned with word length 1.

See Also
bitandreduce | bitconcat | bitsliceget | bitxorreduce



3 Functions — Alphabetical List

3-58

bitreplicate
Replicate and concatenate bits of fi object

Syntax

c = bitreplicate(a,n)

Description

c = bitreplicate(a,n) concatenates the bits in fi object a n times and returns an
unsigned fixed-point value. The word length of the output fi object c is equal to n times
the word length of a and the fraction length of c is zero. The bit representation of the
stored integer is in two's complement representation.

The input fi object can be signed or unsigned. bitreplicate concatenates signed and
unsigned bits the same way.

bitreplicate only supports fi objects with fixed-point data types.

bitreplicate does not support inputs with complex data types.

Sign and scaling of the input fi object does not affect the result type and value.

Examples

The following example uses bitreplicate to replicate and concatenate the bits of fi
object a.

a = fi(14,0,6,0);

a_binary = a.bin

c = bitreplicate(a,2);

c_binary = c.bin

MATLAB returns the following:

a_binary =



 bitreplicate

3-59

001110

c_binary =

001110001110

See Also
bitand | bitconcat | bitget | bitset | bitor | bitsliceget | bitxor



3 Functions — Alphabetical List

3-60

bitrol
Bitwise rotate left

Syntax

c = bitrol(a, k)

Description

c = bitrol(a, k) returns the value of the fixed-point fi object, a, rotated left by
k bits. bitrol rotates bits from the most significant bit (MSB) side into the least
significant bit (LSB) side. It performs the rotate left operation on the stored integer bits
of a.

bitrol does not check overflow or underflow. It ignores fimath properties such as
RoundingMode and OverflowAction.

a and c have the same fimath and numerictype properties.

Examples

Rotate the Bits of a fi Object Left

Create an unsigned fixed-point fi object with a value of 10, word length 4, and fraction
length 0.

a = fi(10,0,4,0);

disp(bin(a))

1010

Rotate a left 1 bit.

disp(bin(bitrol(a,1)))

0101



 bitrol

3-61

Rotate a left 2 bits.

disp(bin(bitrol(a,2)))

1010

Rotate Bits in a Vector Left

Create a vector of fi objects.

a = fi([1,2,5,7],0,4,0)

a = 

     1     2     5     7

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 4

        FractionLength: 0

disp(bin(a))

0001   0010   0101   0111

Rotate the bits in vector a left 1 bit.

disp(bin(bitrol(a,1)))

0010   0100   1010   1110

Rotate Bits Left Using fi to Specify Number of Bits to Rotate

Create an unsigned fixed-point fi object with a value 10, word length 4, and fraction
length 0.

a = fi(10,0,4,0);

disp(bin(a))

1010

Rotate a left 1 bit where k is a fi object.

disp(bin(bitrol(a,fi(1))))



3 Functions — Alphabetical List

3-62

0101

Input Arguments

a — Data that you want to rotate
scalar | vector | matrix | multidimensional array

Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional
array of fi objects. a can be signed or unsigned.

Data Types: fixed-point fi

Complex Number Support: Yes

k — Number of bits to rotate
non-negative, integer-valued scalar

Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or
built-in numeric type. k can be greater than the word length of a. This value is always
normalized to mod(a.WordLength,k).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

See Also
bitconcat | bitror | bitshift | bitsliceget | bitsll | bitsra | bitsrl



 bitror

3-63

bitror
Bitwise rotate right

Syntax

c = bitror(a, k)

Description

c = bitror(a, k) returns the value of the fixed-point fi object, a, rotated right
by k bits. bitror rotates bits from the least significant bit (LSB) side into the most
significant bit (MSB) side. It performs the rotate right operation on the stored integer
bits of a.

bitror does not check overflow or underflow. It ignores fimath properties such as
RoundingMode and OverflowAction.

a and c have the same fimath and numerictype properties.

Examples

Rotate Bits of a fi Object Right

Create an unsigned fixed-point fi object with a value 5, word length 4, and fraction
length 0.

a = fi(5,0,4,0);

disp(bin(a))

0101

Rotate a right 1 bit.

disp(bin(bitror(a,1)))

1010



3 Functions — Alphabetical List

3-64

Rotate a right 2 bits.

disp(bin(bitror(a,2)))

0101

Rotate Bits in a Vector Right

Create a vector of fi objects.

a = fi([1,2,5,7],0,4,0);

disp(bin(a))

0001   0010   0101   0111

Rotate the bits in vector a right 1 bit.

disp(bin(bitror(a,fi(1))))

1000   0001   1010   1011

Rotate Bits Right Using fi to Specify Number of Bits to Rotate

Create an unsigned fixed-point fi object with a value 5, word length 4, and fraction
length 0.

a = fi(5,0,4,0);

disp(bin(a))

0101

Rotate a right 1 bit where k is a fi object.

disp(bin(bitror(a,fi(1))))

1010

Input Arguments

a — Data that you want to rotate
scalar | vector | matrix | multidimensional array

Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional
array of fi objects. a can be signed or unsigned.



 bitror

3-65

Data Types: fixed-point fi

Complex Number Support: Yes

k — Number of bits to rotate
non-negative, integer-valued scalar

Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or
built-in numeric type. k can be greater than the word length of a. This value is always
normalized to mod(a.WordLength,k).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

See Also
bitconcat | bitrol | bitshift | bitsliceget | bitsll | bitsra | bitsrl



3 Functions — Alphabetical List

3-66

bitset
Set bits at certain positions

Syntax

c = bitset(a, bit)

c = bitset(a, bit, v)

Description

c = bitset(a, bit) returns the value of a with position bit set to 1 (on).

c = bitset(a, bit, v) returns the value of a with position bit set to v.

Examples

Set the Bit at a Certain Position

Begin with an unsigned fixed-point fi number with a value of 5, word length 4, and
fraction length 0.

a = fi(5,0,4,0);

disp(bin(a))

0101

Set the bit at position 4 to 1 (on).

c = bitset(a,4);

disp(bin(c))

1101

Set the Bit at a Certain Position in a Vector

Consider the following fixed-point vector with word length 4 and fraction length 0.



 bitset

3-67

a = fi([0 1 8 2 4],0,4,0);

disp(bin(a))

0000   0001   1000   0010   0100

In each element of vector a, set the bits at position 2 to 1.

c = bitset(a,2,1);

disp(bin(c))

0010   0011   1010   0010   0110

Set the Bit at a Certain Position with Fixed Point Index

Consider the following fixed-point scalar with a value of 5.

a = fi(5,0,4,0);

disp(bin(a))

0101

Set the bit at position fi(2) to 1.

c = bitset(a,fi(2),1);

disp(bin(c))

0111

Set the Bit When Index Is a Vector

Create a fi object with a value of pi.

a = fi(pi);

disp(bin(a))

0110010010001000

In this case, a is signed with a word length of 16.

Create a vector of the bit positions in a that you want to set to on. Then, get the binary
representation of the resulting fi vector.

bit = fi([15,3,8,2]);

c = bitset(a,bit);

disp(bin(c))



3 Functions — Alphabetical List

3-68

0110010010001000   0110010010001100   0110010010001000   0110010010001010

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point
fi objects. If a has a signed numerictype, the bit representation of the stored integer is
in two's complement representation.

Data Types: fixed-point fi

bit — Bit index
scalar | vector | matrix | multidimensional array

Bit index, specified as a scalar, vector, matrix, or multidimensional array of fi objects or
built-in data types. bit must be a number between 1 and the word length of a, inclusive.
The LSB (right-most bit) is specified by bit index 1 and the MSB (left-most bit) is specified
by the word length of a.

a = fi(pi,0,8);

a.bin

11001001

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

v — Bit value
scalar | vector | matrix | multidimensional array



 bitset

3-69

Bit value of a at index bit, specified as a scalar, vector, matrix, or multidimensional
array of fi objects or built-in data types. v can have values of 0, or 1. Any value other
than 0 is automatically set to 1. When v is nonscalar, it must have the same dimensions
as one of the other inputs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output Arguments

c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fi
objects.

See Also
bitand | bitcmp | bitget | bitor | bitxor



3 Functions — Alphabetical List

3-70

bitshift
Shift bits specified number of places

Syntax

c = bitshift(a, k)

Description

c = bitshift(a, k) returns the value of a shifted by k bits. The input fi object a
may be a scalar value or a vector and can be any fixed-point numeric type. The output fi
object c has the same numeric type as a. k must be a scalar value and a MATLAB built-
in numeric type.

The OverflowAction property of a is obeyed, but the RoundingMethod is always
Floor. If obeying the RoundingMethod property of a is important, try using the pow2
function.

When the overflow action is Saturate the sign bit is always preserved. The sign bit is
also preserved when the overflow action is Wrap, and k is negative. When the overflow
action is Wrap and k is positive, the sign bit is not preserved.

• When k is positive, 0-valued bits are shifted in on the right.
• When k is negative, and a is unsigned, or a signed and positive fi object, 0-valued

bits are shifted in on the left.
• When k is negative and a is a signed and negative fi object, 1-valued bits are shifted

in on the left.

Examples

This example highlights how changing the OverflowAction property of the fimath
object can change the results returned by the bitshift function. Consider the following
signed fixed-point fi object with a value of 3, word length 16, and fraction length 0:

a = fi(3,1,16,0);



 bitshift

3-71

By default, the OverflowAction fimath property is Saturate. When a is shifted such
that it overflows, it is saturated to the maximum possible value:

for k=0:16,b=bitshift(a,k);...

disp([num2str(k,'%02d'),'. ',bin(b)]);end

00. 0000000000000011

01. 0000000000000110

02. 0000000000001100

03. 0000000000011000

04. 0000000000110000

05. 0000000001100000

06. 0000000011000000

07. 0000000110000000

08. 0000001100000000

09. 0000011000000000

10. 0000110000000000

11. 0001100000000000

12. 0011000000000000

13. 0110000000000000

14. 0111111111111111

15. 0111111111111111

16. 0111111111111111

Now change OverflowAction to Wrap. In this case, most significant bits shift off the
“top” of a until the value is zero:

a = fi(3,1,16,0,'OverflowAction','Wrap');

for k=0:16,b=bitshift(a,k);...

disp([num2str(k,'%02d'),'. ',bin(b)]);end

00. 0000000000000011

01. 0000000000000110

02. 0000000000001100

03. 0000000000011000

04. 0000000000110000

05. 0000000001100000

06. 0000000011000000

07. 0000000110000000

08. 0000001100000000

09. 0000011000000000

10. 0000110000000000

11. 0001100000000000

12. 0011000000000000

13. 0110000000000000



3 Functions — Alphabetical List

3-72

14. 1100000000000000

15. 1000000000000000

16. 0000000000000000

See Also
bitand | bitcmp | bitget | bitor | bitset | bitsll | bitsra | bitsrl | bitxor
| pow2



 bitsliceget

3-73

bitsliceget
Get consecutive slice of bits

Syntax

c = bitsliceget(a)

c = bitsliceget(a, lidx)

c = bitsliceget(a, lidx, ridx)

Description

c = bitsliceget(a) returns the entire set of bits in the fixed-point input a.

c = bitsliceget(a, lidx) returns a consecutive slice of bits from a, starting at
position lidx and ending at the LSB (the bit at position 1).

c = bitsliceget(a, lidx, ridx) returns a consecutive slice of bits from a, starting
at position lidx and ending at position ridx.

The bitsliceget arguments must satisfy the following condition:
a.WordLength >= lidx >= ridx >= 1

Examples

Get Entire Set of Bits

Begin with the following fixed-point number.

a = fi(85,0,8,0);

disp(bin(a))

01010101

Get the entire set of bits of a.

c = bitsliceget(a);

disp(bin(c))



3 Functions — Alphabetical List

3-74

01010101

Get a Slice of Consecutive Bits with Unspecified Endpoint

Begin with the following fixed-point number.

a = fi(85,0,8,0);

disp(bin(a))

01010101

Get the binary representation of the consecutive bits, starting at position 6.

c = bitsliceget(a,6);

disp(bin(c))

010101

Get a Slice of Consecutive Bits with Fixed-Point Indexes

Begin with the following fixed-point number.

a = fi(85,0,8,0);

disp(bin(a))

01010101

Get the binary representation of the consecutive bits from fi(6) to fi(2).

c = bitsliceget(a,fi(6),fi(2));

disp(bin(c))

01010

Get a Specified Set of Consecutive Bits from Each Element of a Matrix

Begin with the following unsigned fixed-point 3-by-3 matrix.

a = fi([2 3 4;6 8 2;3 5 1],0,4,0);

disp(bin(a))

0010   0011   0100

0110   1000   0010

0011   0101   0001

Get the binary representation of a consecutive set of bits of matrix a. For each element,
start at position 4 and end at position 2.



 bitsliceget

3-75

c = bitsliceget(a,4,2);

disp(bin(c))

001   001   010

011   100   001

001   010   000

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point
fi objects. If a has a signed numerictype, the bit representation of the stored integer is
in two’s complement representation.

Data Types: fixed-point fi

lidx — Start position for slice
scalar

Start position of slice specified as a scalar of built-in type. lidx represents the position in
the slice closest to the MSB.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

ridx — End position for slice
scalar

End position of slice specified as a scalar of built-in type. ridx represents the position in
the slice closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output Arguments

c — Output array
scalar | vector | matrix | multidimensional array



3 Functions — Alphabetical List

3-76

Fixed-point fi output, specified as a scalar, vector, matrix, or multidimensional array
with no scaling. The word length is equal to slice length, lidx-ridx+1.

If lidx and ridx are equal, bitsliceget only slices one bit, and bitsliceget(a,
lidx, ridx) is the same as bitget(a, lidx).

See Also
bitand | bitcmp | bitget | bitor | bitset | bitxor



 bitsll

3-77

bitsll

Bit shift left logical

Syntax

c = bitsll(a, k)

Description

c = bitsll(a, k) returns the result of a logical left shift by k bits on input a for fixed-
point operations. bitsll shifts zeros into the positions of bits that it shifts left. The
function does not check overflow or underflow. For floating-point operations, bitsll
performs a multiply by 2k.

bitsll ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and c have the same associated fimath and numerictype
objects.

Examples

Shift Left a Signed fi Input

Shift a signed fi input left by 1 bit.

Create a fi object, and display its binary value.

a = fi(10,0,4,0);

disp(bin(a))

1010

Shift a left by 1 bit, and display its binary value.

disp(bin(bitsll(a,1)))



3 Functions — Alphabetical List

3-78

0100

Shift a left by 1 more bit.

disp(bin(bitsll(a,2)))

1000

Shift Left Using a fi Shift Value

Shift left a built-in int8 input using a fi shift value.

k = fi(2);

a = int8(16);

bitsll(a,k)

ans =

   64

Shift Left a Built-in int8 Input

Use bitsll to shift an int8 input left by 2 bits.

a = int8(4);

bitsll(a,2)

ans =

   16

Shift Left a Floating-Point Input

Scale a floating-point double input by .

a = double(16);

bitsll(a,3)

ans =



 bitsll

3-79

   128

Input Arguments

a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional
array of fi objects or built-in numeric types.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar fi object or
built-in numeric type.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

See Also
bitconcat | bitrol | bitror | bitshift | bitsra | bitsrl | pow2



3 Functions — Alphabetical List

3-80

bitsra

Bit shift right arithmetic

Syntax

c=bitsra(a,k)

Description

c=bitsra(a,k) returns the result of an arithmetic right shift by k bits on input a for
fixed-point operations. For floating-point operations, it performs a multiply by 2-k.

If the input is unsigned, bitsra shifts zeros into the positions of bits that it shifts right.
If the input is signed, bitsra shifts the most significant bit (MSB) into the positions of
bits that it shifts right.

bitsra ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and c have the same associated fimath and numerictype
objects.

Examples

Shift Right a Signed fi Input

Create a signed fixed-point fi object with a value of –8, word length 4, and fraction
length 0. Then display the binary value of the object.

a = fi(-8,1,4,0);

disp(bin(a))

1000

Shift a right by 1 bit.



 bitsra

3-81

disp(bin(bitsra(a,1)))

1100

bitsra shifts the MSB into the position of the bit that it shifts right.

Shift Right a Built-in int8 Input

Use bitsra to shift an int8 input right by 2 bits.

a = int8(64);

bitsra(a,2)

ans =

   16

Shift Right Using a fi Shift Value

Shift right a built-in int8 input using a fi shift value.

k = fi(2);

a = int8(64);

bitsra(a,k)

ans =

   16

Shift Right a Floating-Point Input

Scale a floating-point double input by .

a = double(128);

bitsra(a,3)

ans =

    16



3 Functions — Alphabetical List

3-82

Input Arguments

a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional
array of fi objects or built-in numeric types.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar fi object or
built-in numeric type.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

See Also
bitshift | bitsll | bitsrl | pow2



 bitsrl

3-83

bitsrl
Bit shift right logical

Syntax

c = bitsrl(a, k)

Description

c = bitsrl(a, k) returns the result of a logical right shift by k bits on input a for
fixed-point operations. bitsrl shifts zeros into the positions of bits that it shifts right. It
does not check overflow or underflow.

bitsrl ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and c have the same associated fimath and numerictype
objects.

Examples

Shift Right a Signed fi Input

Shift a signed fi input right by 1 bit.

Create a signed fixed-point fi object with a value of –8, word length 4, and fraction
length 0 and display its binary value.

a = fi(-8,1,4,0);

disp(bin(a))

1000

Shift a right by 1 bit, and display the binary value.

disp(bin(bitsrl(a,1)))

0100



3 Functions — Alphabetical List

3-84

bitsrl shifts a zero into the position of the bit that it shifts right.

Shift right using a fi shift value

Shift right a built-in int8 input using a fi shift value.

k=fi(2);

a = int8(64);

bitsrl(a,k)

ans =

   16

Shift right a built-in uint8 input

Use bitsrl to shift an uint8 input right by 2 bits.

a = uint8(64);

bitsrl(a,2)

ans =

   16

Input Arguments

a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional
array.

Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar.



 bitsrl

3-85

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

See Also
bitconcat | bitrol | bitror | bitshift | bitsliceget | bitsll | bitsra |
pow2



3 Functions — Alphabetical List

3-86

bitxor
Bitwise exclusive OR of two fi objects

Syntax

c = bitxor(a,b)

Description

c = bitxor(a,b) returns the bitwise exclusive OR of fi objects a and b. The output is
determined as follows:

• Elements in the output array c are assigned a value of 1 when exactly one of the
corresponding bits in the input arrays has a value of 1.

• Elements in the output array c are assigned a value of 0 when the corresponding bits
in the input arrays have the same value (e.g. both 1's or both 0's).

The numerictype properties associated with a and b must be identical. If both inputs
have a local fimath, their local fimath properties must be identical. If the numerictype
is signed, then the bit representation of the stored integer is in two's complement
representation.

a and b must have the same dimensions unless one is a scalar.

bitxor only supports fi objects with fixed-point data types.

Examples

The following example finds the bitwise exclusive OR of fi objects a and b.

a = fi(-28,1,6,0);

b = fi(12, 1, 6, 0);

c = bitxor(a,b)

c =

 



 bitxor

3-87

   -24

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 6

        FractionLength: 0

You can verify the result by examining the binary representations of a, b and c.

binary_a = a.bin

binary_b = b.bin

binary_c = c.bin

binary_a =

100100

binary_b =

001100

binary_c =

101000

See Also
bitand | bitcmp | bitget | bitor | bitset



3 Functions — Alphabetical List

3-88

bitxorreduce
Reduce consecutive slice of bits to one bit by performing bitwise exclusive OR operation

Syntax

c = bitxorreduce(a)

c = bitxorreduce(a, lidx)

c = bitxorreduce(a, lidx, ridx)

Description

c = bitxorreduce(a) performs a bitwise exclusive OR operation on the entire set
of bits in the fixed-point input, a. It returns the result as an unsigned integer of word
length 1.

c = bitxorreduce(a, lidx) performs a bitwise exclusive OR operation on a
consecutive range of bits. This operation starts at position lidx and ends at the LSB (the
bit at position 1).

c = bitxorreduce(a, lidx, ridx) performs a bitwise exclusive OR operation on a
consecutive range of bits, starting at position lidx and ending at position ridx.

The bitxorreduce arguments must satisfy the following condition:
a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise Exclusive OR Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);

disp(bin(a))

01001001

Perform a bitwise exclusive OR operation on the entire set of bits in a.



 bitxorreduce

3-89

c = bitxorreduce(a)

c = 

     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

Perform Bitwise Exclusive OR Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a = fi([12,4,8,15],0,8,0);

disp(bin(a))

00001100   00000100   00001000   00001111

Perform a bitwise exclusive OR operation on the bits of each element of a, starting at
position fi(4).

c = bitxorreduce(a,fi(4))

c = 

     0     1     1     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

Perform a Bitwise Exclusive OR Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7,8,1;5,9,5;8,37,2],0,8,0);

disp(bin(a))

00000111   00001000   00000001

00000101   00001001   00000101

00001000   00100101   00000010



3 Functions — Alphabetical List

3-90

Perform a bitwise exclusive OR operation on the bits of each element of matrix a
beginning at position 5 and ending at position 2.

c = bitxorreduce(a,5,2)

c = 

     0     1     0

     1     1     1

     1     1     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point
fi objects.

bitxorreduce supports both signed and unsigned inputs with arbitrary scaling. The
sign and scaling properties do not affect the result type and value. bitxorreduce
performs the operation on a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. lidx represents the position
in the range closest to the MSB.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

ridx — End position of range
scalar



 bitxorreduce

3-91

End position of range specified as a scalar of built-in type. ridx represents the position
in the range closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output Arguments

c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-
point fi objects. c is unsigned with word length 1.

See Also
bitandreduce | bitconcat | bitorreduce | bitsliceget



3 Functions — Alphabetical List

3-92

buffer
Buffer signal vector into matrix of data frames

Description

This function accepts fi objects as inputs.

Refer to the DSP System Toolbox™ buffer function reference page for more
information.



 buildInstrumentedMex

3-93

buildInstrumentedMex
Generate compiled C code function including logging instrumentation

Syntax
buildInstrumentedMex fcn -options

Description
buildInstrumentedMex fcn -options translates the MATLAB file fcn.m to a
MEX function and enables instrumentation for logging minimum and maximum values
of all named and intermediate variables. Optionally, you can enable instrumentation
for log2 histograms of all named, intermediate and expression values. The general
syntax and options of buildInstrumentedMex and fiaccel are the same, except
buildIntstrumentedMex has no fi object restrictions and supports the ‘-coder’
option.

Input Arguments
fcn

MATLAB function to be instrumented. fcn must be suitable for code generation. For
more information, see “Make the MATLAB Code Suitable for Code Generation”.

options

Choice of compiler options. buildInstrumentedMex gives precedence to individual
command-line options over options specified using a configuration object. If command-
line options conflict, the rightmost option prevails.

-args example_inputs Define the size, class, and complexity of
all MATLAB function inputs. Use the
values in example_inputs to define these
properties. example_inputs must be a
cell array that specifies the same number
and order of inputs as the MATLAB
function.



3 Functions — Alphabetical List

3-94

-coder Use MATLAB Coder software to compile
the MEX file, instead of the default Fixed-
Point Designer fiaccel function. This
option removes fiaccel restrictions and
allows for full code generation support. You
must have a MATLAB Coder license to use
this option.

-config config_object Specify MEX generation parameters, based
on config_object, defined as a MATLAB
variable using coder.mexconfig. For
example:

cfg = coder.mexconfig;

-d out_folder Store generated files in the absolute or
relative path specified by out_folder. If
the folder specified by out_folder does
not exist, buildInstrumentedMex creates
it for you.

If you do not specify the folder location,
buildInstrumentedMex generates files in
the default folder:

fiaccel/mex/fcn. 

fcn is the name of the MATLAB function
specified at the command line.

The function does not support the following
characters in folder names: asterisk (*),
question-mark (?), dollar ($), and pound
(#).

-g Compiles the MEX function in debug
mode, with optimization turned off. If
not specified, buildinstrumentedMex
generates the MEX function in optimized
mode.



 buildInstrumentedMex

3-95

-global global_values Specify initial values for global variables
in MATLAB file. Use the values in cell
array global_values to initialize global
variables in the function you compile. The
cell array should provide the name and
initial value of each global variable. You
must initialize global variables before
compiling with buildInstrumentedMex.
If you do not provide initial values for
global variables using the -global option,
buildInstrumentedMex checks for the
variable in the MATLAB global workspace.
If you do not supply an initial value,
buildInstrumentedMex generates an
error.

The generated MEX code and MATLAB
each have their own copies of global
data. To ensure consistency, you must
synchronize their global data whenever the
two interact. If you do not synchronize the
data, their global variables might differ.

-histogram Compute the log2 histogram for all named,
intermediate and expression values. A
histogram column appears in the code
generation report table.

-I include_path Add include_path to the beginning of the
code generation path.

buildInstrumentedMex searches the
code generation path first when converting
MATLAB code to MEX code.

-launchreport Generate and open a code generation
report. If you do not specify this option,
buildInstrumentedMex generates a
report only if error or warning messages
occur or you specify the -report option.



3 Functions — Alphabetical List

3-96

-o output_file_name Generate the MEX function with the base
name output_file_name plus a platform-
specific extension.

output_file_name can be a file name or
include an existing path.

If you do not specify an output file name,
the base name is fcn_mex, which allows
you to run the original MATLAB function
and the MEX function and compare the
results.

-O optimization_option Optimize generated MEX code, based on
the value of optimization_option:

• enable:inline — Enable function
inlining

• disable:inline — Disable function
inlining

If not specified, buildInstrumentedMex
uses inlining for optimization.

-report Generate a code generation report.
If you do not specify this option,
buildInstrumentedMex generates a
report only if error or warning messages
occur or you specify the -launchreport
option.

Examples

Create an instrumented MEX function. Run a test bench, then view logged results.

1 Create a temporary directory, then import an example function from Fixed-Point
Designer.

tempdirObj=fidemo.fiTempdir('buildInstrumentedMex')

copyfile(fullfile(matlabroot,'toolbox','fixedpoint',...

   'fidemos','fi_m_radix2fft_withscaling.m'),...



 buildInstrumentedMex

3-97

   'testfft.m','f')

2 Define prototype input arguments.

n = 128;

x = complex(zeros(n,1));

W = coder.Constant(fidemo.fi_radix2twiddles(n));

3 Generate an instrumented MEX function. Use the -o option to specify the MEX
function name. Use the -histogram option to compute histograms. (If you have a
MATLAB Coder license, you may want to also add the -coder option. In this case,
use buildInstrumentedMex testfft -coder -o testfft_instrumented -
args {x,W} instead of the following line of code.)

Note: Like fiaccel, buildInstrumentedMex generates a MEX function. To
generate C code, see the MATLAB Codercodegen function.

buildInstrumentedMex testfft -o testfft_instrumented...

-args {x,W} -histogram

4 Run a test file to record instrumentation results. Call
showInstrumentationResults to open the Code Generation Report. View the
simulation minimum and maximum values and whole number status by hovering
over a variable in the report. You can also see proposed data types for double
precision numbers in the table.

for i=1:20

   y = testfft_instrumented(randn(size(x)));

end

showInstrumentationResults testfft_instrumented



3 Functions — Alphabetical List

3-98

1
View the histogram for a variable by clicking  in the Variables tab.



 buildInstrumentedMex

3-99

For information on the figure, refer to the NumericTypeScope reference page.
2 Close the histogram display and then, clear the results log.

clearInstrumentationResults testfft_instrumented;

3 Clear the MEX function, then delete temporary files.



3 Functions — Alphabetical List

3-100

clear testfft_instrumented;

tempdirObj.cleanUp;

More About

Tips

• You cannot instrument MATLAB functions provided with the software. If your
top-level function is such a MATLAB function, nothing is logged. You also cannot
instrument scripts.

• Instrumentation results are accumulated every time the instrumented MEX function
is called. Use clearInstrumentationResults to clear previous results in the log.

• Some coding patterns pass a significant amount of data, but only use a small
portion of that data. In such cases, you may see degraded performance when using
buildInstrumentedMex. In the following pattern, subfun only uses one element
of input array, A. For normal execution, the amount of time to execute subfun once
remains constant regardless of the size of A. The function topfun calls subfun
N times, and thus the total time to execute topfun is proportional to N. When
instrumented, however, the time to execute subfun once becomes proportional to N^2.
This change occurs because the minimum and maximum data are calculated over the
entire array. When A is large, the calculations can lead to significant performance
degradation. Therefore, whenever possible, you should pass only the data that the
function actually needs.

function A = topfun(A)

    N = numel(A);

    for i=1:N

        A(i) = subfun(A,i);

    end

end

function b = subfun(A,i)

    b = 0.5 * A(i);

end

  

function A = topfun(A)

    N = numel(A);

    for i=1:N

        A(i) = subfun(A(i));   

    end  

end



 buildInstrumentedMex

3-101

function b = subfun(a)

    b = 0.5 * a;

end

See Also
fiaccel | clearInstrumentationResults | showInstrumentationResults |
NumericTypeScope | codegen | mex



3 Functions — Alphabetical List

3-102

cast
Cast variable to different data type

Syntax

b = cast(a,'like',p)

Description

b = cast(a,'like',p) converts a to the same numerictype, complexity (real or
complex), and fimath as p. If a and p are both real, then b is also real. Otherwise, b is
complex.

Examples

Convert an int8 Value to Fixed Point

Define a scalar 8–bit integer.

a = int8(5);

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Convert a to fixed point with numerictype, complexity (real or complex), and fimath of
the specified fi object, p.

b = cast(a, 'like', p)

b = 

     5

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24



 cast

3-103

        FractionLength: 12

Match Data Type and Complex Nature of p

Define a complex fi object.

p = fi( [1+2i 3i],1,24,12);

Define a scalar 8–bit integer.

a = int8(5);

Convert a to the same data type and complexity as p.

b = cast(a,'like',p)

b = 

   5.0000 + 0.0000i

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

Convert an Array to Fixed Point

Define a 2-by-3 matrix of ones.

A = ones(2,3);

Create a signed fi object with word length of 16 and fraction length of 8.

p = fi([],1,16,8);

Convert A to the same data type and complexity (real or complex) as p.

B = cast(A,'like',p)

B = 

     1     1     1

     1     1     1



3 Functions — Alphabetical List

3-104

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing
the algorithm itself. To reuse the algorithm, define the data types separately from the
algorithm.

This approach allows you to define a baseline by running the algorithm with floating-
point data types. You can then test the algorithm with different fixed-point data types
and compare the fixed-point behavior to the baseline without making any modifications
to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T, which is a
structure that defines the data types of the coefficients and the input and output data.

function [y,z] = my_filter(b,a,x,z,T)

    % Cast the coefficients to the coefficient type

    b = cast(b,'like',T.coeffs);

    a = cast(a,'like',T.coeffs);

    % Create the output using zeros with the data type

    y = zeros(size(x),'like',T.data);

    for i = 1:length(x)

        y(i) = b(1)*x(i) + z(1);

        z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

        z(2) = b(3)*x(i)        - a(3) * y(i);

    end

end

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a
floating-point step input and a fixed-point step input, and then compares the results.

function zeros_ones_cast_example

    % Define coefficients for a filter with specification

    % [b,a] = butter(2,0.25)

    b = [0.097631072937818   0.195262145875635   0.097631072937818];

    a = [1.000000000000000  -0.942809041582063   0.333333333333333];

    % Define floating-point types

    T_float.coeffs = double([]);



 cast

3-105

    T_float.data   = double([]);

    % Create a step input using ones with the 

    % floating-point data type

    t = 0:20;

    x_float = ones(size(t),'like',T_float.data);

    % Initialize the states using zeros with the 

    % floating-point data type

    z_float = zeros(1,2,'like',T_float.data);

    % Run the floating-point algorithm

    y_float = my_filter(b,a,x_float,z_float,T_float);

     

    % Define fixed-point types

    T_fixed.coeffs = fi([],true,8,6);

    T_fixed.data   = fi([],true,8,6);

    % Create a step input using ones with the 

    % fixed-point data type

    x_fixed = ones(size(t),'like',T_fixed.data);

    % Initialize the states using zeros with the 

    % fixed-point data type

    z_fixed = zeros(1,2,'like',T_fixed.data);

    % Run the fixed-point algorithm

    y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);

     

    % Compare the results

    coder.extrinsic('clf','subplot','plot','legend')

    clf

    subplot(211)

    plot(t,y_float,'co-',t,y_fixed,'kx-')

    legend('Floating-point output','Fixed-point output')

    title('Step response')

    subplot(212)

    plot(t,y_float - double(y_fixed),'rs-')

    legend('Error')

    figure(gcf)

end

• “Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using
cast and zeros”



3 Functions — Alphabetical List

3-106

Input Arguments

a — Variable that you want to cast to a different data type
fi object | numeric variable

Variable, specified as a fi object or numeric variable.

Complex Number Support: Yes

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a
complex object, you must specify a value for the prototype. Otherwise, you do not need to
specify a value.

Complex Number Support: Yes

More About

Tips

Using the b = cast(a,'like',p) syntax to specify data types separately from
algorithm code allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements

for different data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm

code.

• “Manual Fixed-Point Conversion Workflow”
• “Manual Fixed-Point Conversion Best Practices”

See Also
cast | ones | zeros



 ceil

3-107

ceil
Round toward positive infinity

Syntax

y = ceil(a)

Description

y = ceil(a) rounds fi object a to the nearest integer in the direction of positive
infinity and returns the result in fi object y.

y and a have the same fimath object and DataType property.

When the DataType property of a is single, double, or boolean, the numerictype of
y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer, and the
numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0, its sign is the
same as that of a, and its word length is the difference between the word length and the
fraction length of a plus one bit. If a is signed, then the minimum word length of y is 2. If
a is unsigned, then the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded independently.

ceil does not support fi objects with nontrivial slope and bias scaling. Slope and bias
scaling is trivial when the slope is an integer power of 2 and the bias is 0.

Examples

Example 1

The following example demonstrates how the ceil function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 3.



3 Functions — Alphabetical List

3-108

a = fi(pi, 1, 8, 3) 

a =

 

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

y = ceil(a) 

y =

 

     4

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 6

        FractionLength: 0

Example 2

The following example demonstrates how the ceil function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12) 

a =

 

    0.0249

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 12

y = ceil(a) 

y =

 

     1



 ceil

3-109

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 2

        FractionLength: 0

Example 3

The functions ceil, fix, and floor differ in the way they round fi objects:

• The ceil function rounds values to the nearest integer toward positive infinity
• The fix function rounds values toward zero
• The floor function rounds values to the nearest integer toward negative infinity

The following table illustrates these differences for a given fi object a.

a ceil(a) fix(a) floor(a)

– 2.5 –2 –2 –3
–1.75 –1 –1 –2
–1.25 –1 –1 –2
–0.5 0 0 –1
0.5 1 0 0
1.25 2 1 1
1.75 2 1 1
2.5 3 2 2

See Also
convergent | fix | floor | nearest | round



3 Functions — Alphabetical List

3-110

clabel
Create contour plot elevation labels

Description

This function accepts fi objects as inputs.

Refer to the MATLAB clabel reference page for more information.



 clearInstrumentationResults

3-111

clearInstrumentationResults
Clear results logged by instrumented, compiled C code function

Syntax
clearInstrumentationResults('mex_fcn')

clearInstrumentationResults mex_fcn

clearInstrumentationResults all

Description
clearInstrumentationResults('mex_fcn') clears the results logged from calling
the instrumented MEX function mex_fcn.

clearInstrumentationResults mex_fcn is alternative syntax for clearing the log.

clearInstrumentationResults all clears the results from all instrumented MEX
functions.

Input Arguments
mex_fcn

Instrumented MEX function created using buildInstrumentedMex.

Examples
Run a test bench to log instrumentation, then use clearInstrumentationResults to
clear the log.

1 Create a temporary directory, then import an example function from Fixed-Point
Designer.

tempdirObj=fidemo.fiTempdir('showInstrumentationResults')

copyfile(fullfile(matlabroot,'toolbox','fixedpoint',...

   'fidemos','fi_m_radix2fft_withscaling.m'),...

   'testfft.m','f')



3 Functions — Alphabetical List

3-112

2 Define prototype input arguments.

n = 128;

x = complex(fi(zeros(n,1),'DataType','ScaledDouble'));

W = coder.Constant(fi(fidemo.fi_radix2twiddles(n)));

3 Generate an instrumented MEX function. Use the -o option to specify the MEX
function name.

buildInstrumentedMex testfft -o testfft_instrumented -args {x,W}

4 Run a test bench to record instrumentation results. Call
showInstrumentationResults to open the Code Generation Report. View the
simulation minimum and maximum values and whole number status by hovering
over a variable in the report.

for i=1:20

    y = testfft_instrumented(cast(2*rand(size(x))-1,'like',x));

end

showInstrumentationResults testfft_instrumented

1 Clear the results log.



 clearInstrumentationResults

3-113

clearInstrumentationResults testfft_instrumented

2 Run a different test bench, then view the new instrumentation results.

for i=1:20

   y = testfft_instrumented(cast(rand(size(x))-0.5,'like',x));

end

showInstrumentationResults testfft_instrumented

3 Clear the MEX function and delete temporary files.

clear testfft_instrumented;

tempdirObj.cleanUp;

See Also
fiaccel | showInstrumentationResults | buildInstrumentedMex | codegen |
mex



3 Functions — Alphabetical List

3-114

coder.approximation
Create function replacement configuration object

Syntax
q = coder.approximation(function_name)

q = coder.approximation('Function',function_name,Name,Value)

Description
q = coder.approximation(function_name) creates a function replacement
configuration object for use during code generation or fixed-point conversion. The
configuration object specifies how to create a lookup table approximation for the
MATLAB function specified by function_name. To associate this approximation
with a coder.FixptConfig object for use with thefiaccel function, use the
coder.FixptConfig configuration object addApproximation method.

Use this syntax only for the functions that coder.approximation can replace
automatically. These functions are listed in the function_name argument description.

q = coder.approximation('Function',function_name,Name,Value) creates
a function replacement configuration object using additional options specified by one or
more name-value pair arguments.

Examples
Replace log Function with Default Lookup Table

Create a function replacement configuration object using the default settings. The
resulting lookup table in the generated code uses 1000 points.

logAppx = coder.approximation('log'); 

Replace log Function with Uniform Lookup Table

Create a function replacement configuration object. Specify the input range and prefix to
add to the replacement function name. The resulting lookup table in the generated code
uses 1000 points.



 coder.approximation

3-115

logAppx = coder.approximation('Function','log','InputRange',[0.1,1000],...

'FunctionNamePrefix','log_replace_'); 

Replace log Function with Optimized Lookup Table

Create a function replacement configuration object using the 'OptimizeLUTSize'
option to specify to replace the log function with an optimized lookup table. The
resulting lookup table in the generated code uses less than the default number of points.

 logAppx = coder.approximation('Function','log','OptimizeLUTSize', true,...

'InputRange',[0.1,1000],'InterpolationDegree',1,'ErrorThreshold',1e-3,...

'FunctionNamePrefix','log_optim_','OptimizeIterations',25);  

Replace Custom Function with Optimized Lookup Table

Create a function replacement configuration object that specifies to replace the custom
function, saturateExp, with an optimized lookup table.

Create a custom function, saturateExp.

saturateExp = @(x) 1/(1+exp(-x));  

Create a function replacement configuration object that specifies to replace the
saturateExp function with an optimized lookup table. Because the saturateExp
function is not listed as a function for which coder.approximation can generate an
approximation automatically, you must specify the CandidateFunction property.

saturateExp = @(x) 1/(1+exp(-x));  

custAppx = coder.approximation('Function','saturateExp',...

'CandidateFunction', saturateExp,...

'NumberOfPoints',50,'InputRange',[0,10]); 

• “Replace the exp Function with a Lookup Table”
• “Replace a Custom Function with a Lookup Table”

Input Arguments

function_name — Name of the function to replace
'acos' |  'acosd' | 'acosh' | 'acoth' | 'asin' |  'asind' |  'asinh' | 
'atan' |  'atand' | 'atanh' |  'cos' |  'cosd' |  'cosh' |  'erf ' | 'erfc'



3 Functions — Alphabetical List

3-116

|  'exp' | 'log' |  'normcdf' | 'reallog' | 'realsqrt' | 'reciprocal' |
'rsqrt' | 'sin' | 'sinc' | 'sind' |  'sinh' | 'sqrt' | 'tan' | 'tand'

Name of function to replace, specified as a string. The function must be one of the listed
functions.
Example: 'sqrt'

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Function', 'log'

'Architecture' — Architecture of lookup table approximation
'LookupTable' (default) | 'Flat'

Architecture of the lookup table approximation, specified as the comma-separated
pair consisting of 'Architecture' and a string. Use this argument when you want
to specify the architecture for the lookup table. The Flat architecture does not use
interpolation.
Data Types: char

'CandidateFunction' — Function handle of the replacement function
function handle | string

Function handle of the replacement function, specified as the comma-separated pair
consisting of 'CandidateFunction' and a function handle or string referring to
a function handle. Use this argument when the function that you want to replace is
not listed under function_name. Specify the function handle or string referring to a
function handle of the function that you want to replace. You can define the function in a
file or as an anonymous function.

If you do not specify a candidate function, then the function you chose to replace using
the Function property is set as the CandidateFunction.

Example:  'CandidateFunction', @(x) (1./(1+x))



 coder.approximation

3-117

Data Types: function_handle | char

'ErrorThreshold' — Error threshold value used to calculate optimal lookup table size
0.001 (default) | nonnegative scalar

Error threshold value used to calculate optimal lookup table size, specified as the
comma-separated pair consisting of 'ErrorThreshold' and a nonnegative scalar. If
'OptimizeLUTSize' is true, this argument is required.

'Function' — Name of function to replace with a lookup table approximation
function_name

Name of function to replace with a lookup table approximation, specified as the comma-
separated pair consisting of 'Function' and a string. The function must be continuous
and stateless. If you specify one of the functions that is listed under function_name,
the conversion process automatically provides a replacement function. Otherwise, you
must also specify the 'CandidateFunction' argument for the function that you want
to replace.

Example: 'Function','log'

Example: 'Function', 'my_log',‘CandidateFunction’,@my_log

Data Types: char

'FunctionNamePrefix' — Prefix for generated fixed-point function names
'replacement_' (default) | string

Prefix for generated fixed-point function names, specified as the comma-separated pair
consisting of 'FunctionNamePrefix' and a string. The name of a generated function
consists of this prefix, followed by the original MATLAB function name.
Example: ‘log_replace_’

'InputRange' — Range over which to replace the function
[ ] (default) | 2x1 row vector | 2xN matrix

Range over which to replace the function, specified as the comma-separated pair
consisting of 'InputRange' and a 2-by-1 row vector or a 2-by-N matrix.

Example: [-1 1]

'InterpolationDegree' — Interpolation degree
1 (default) | 0 | 2 | 3



3 Functions — Alphabetical List

3-118

Interpolation degree, specified as the comma-separated pair consisting of
'InterpolationDegree' and1 (linear), 0 (none), 2 (quadratic), or 3 (cubic).

'NumberOfPoints' — Number of points in lookup table
1000 (default) | positive integer

Number of points in lookup table, specified as the comma-separated pair consisting of
'NumberOfPoints' and a positive integer.

'OptimizeIterations' — Number of iterations
25 (default) | positive integer

Number of iterations to run when optimizing the size of the lookup table, specified as the
comma-separated pair consisting of 'OptimizeIterations' and a positive integer.

'OptimizeLUTSize' — Optimize lookup table size
false (default) | true

Optimize lookup table size, specified as the comma-separated pair consisting of
'OptimizeLUTSize' and a logical value. Setting this property to true generates an
area-optimal lookup table, that is, the lookup table with the minimum possible number of
points. This lookup table is optimized for size, but might not be speed efficient.

'PipelinedArchitecture' — Option to enable pipelining
false (default) | true

Option to enable pipelining, specified as the comma-separated pair consisting of
'PipelinedArchitecture' and a logical value.

Output Arguments

q — Function replacement configuration object, returned as a
coder.mathfcngenerator.LookupTable or a coder.mathfcngenerator.Flat
configuration object
coder.mathfcngenerator.LookupTable configuration object |
coder.mathfcngenerator.Flat configuration object

Function replacement configuration object that specifies how to create an
approximation for a MATLAB function. Use the coder.FixptConfig configuration
object addApproximation method to associate this configuration object with a



 coder.approximation

3-119

coder.FixptConfig object. Then use the fiaccel function -float2fixed option with
coder.FixptConfig to convert floating-point MATLAB code to fixed-point MATLAB
code.

Property Default Value

Auto-replace function ''

InputRange []

FunctionNamePrefix 'replacement_'

Architecture LookupTable (read only)
NumberOfPoints 1000

InterpolationDegree 1

ErrorThreshold 0.001

OptimizeLUTSize false

OptimizeIterations 25

More About
• “Replacing Functions Using Lookup Table Approximations”

See Also

Classes
coder.FixptConfig

Functions
fiaccel



3 Functions — Alphabetical List

3-120

coder.allowpcode
Package: coder

Control code generation from protected MATLAB files

Syntax

coder.allowpcode('plain')

Description

coder.allowpcode('plain') allows you to generate protected MATLAB code (P-code)
that you can then compile into optimized MEX functions or embeddable C/C++ code. This
function does not obfuscate the generated MEX functions or embeddable C/C++ code.

With this capability, you can distribute algorithms as protected P-files that provide
code generation optimizations, providing intellectual property protection for your source
MATLAB code.

Call this function in the top-level function before control-flow statements, such as if,
while, switch, and function calls.

MATLAB functions can call P-code. When the .m and .p versions of a file exist in the
same folder, the P-file takes precedence.

coder.allowpcode is ignored outside of code generation.

Examples

Generate optimized embeddable code from protected MATLAB code:

1 Write an function p_abs that returns the absolute value of its input:

function out = p_abs(in)   %#codegen

% The directive %#codegen indicates that the function

% is intended for code generation



 coder.allowpcode

3-121

coder.allowpcode('plain');

out = abs(in);

2 Generate protected P-code. At the MATLAB prompt, enter:

pcode p_abs

The P-file, p_abs.p, appears in the current folder.
3 Generate a MEX function for p_abs.p, using the -args option to specify the size,

class, and complexity of the input parameter (requires a MATLAB Coder license). At
the MATLAB prompt, enter:

codegen p_abs -args { int32(0) }

codegen generates a MEX function in the current folder.
4 Generate embeddable C code for p_abs.p (requires a MATLAB Coder license). At

the MATLAB prompt, enter:

codegen p_abs -config:lib -args { int32(0) };

codegen generates C library code in the codegen\lib\p_abs folder.

See Also
pcode | codegen



3 Functions — Alphabetical List

3-122

coder.ArrayType
Represent set of MATLAB arrays

Description

Specifies the set of arrays that the generated code accepts. Use only with the fiaccel -
args option. Do not pass as an input to a generated MEX function.

Construction

coder.ArrayType is an abstract class. You cannot create instances of it directly.
You can create coder.EnumType, coder.FiType, coder.PrimitiveType, and
coder.StructType objects that derive from this class.

Properties

ClassName

Class of values in this set

SizeVector

The upper-bound size of arrays in this set.

VariableDims

A vector specifying whether each dimension of the array is fixed or variable size. If a
vector element is true, the corresponding dimension is variable size.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.



 coder.ArrayType

3-123

See Also
coder.Type | coder.EnumType | coder.newtype | coder.resize | fiaccel |
coder.FiType | coder.PrimitiveType | coder.StructType | coder.typeof



3 Functions — Alphabetical List

3-124

coder.config
Create fixed-point configuration object

Syntax

config_obj = coder.config('fixpt')

Description

config_obj = coder.config('fixpt') creates a coder.FixptConfig
configuration object. Use this object with the fiaccel function when converting floating-
point MATLAB code to fixed-point MATLAB code.

Examples

Convert Floating-Point MATLAB Code to Fixed-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.

fixptcfg.TestBenchName = 'dti_test';

Convert your floating-point MATLAB design to fixed point. In this example, the
MATLAB function name is dti.

fiaccel -float2fixed fixptcfg dti

See Also
coder.config | coder.FixptConfig | fiaccel



 coder.const

3-125

coder.const
Fold expressions into constants in generated code

Syntax

out = coder.const(expression)

[out1,...,outN] = coder.const(handle,arg1,...,argN)

Description

out = coder.const(expression) evaluates expression and replaces out with the
result of the evaluation in generated code.

[out1,...,outN] = coder.const(handle,arg1,...,argN) evaluates the multi-
output function having handle handle. It then replaces out1,...,outN with the
results of the evaluation in the generated code.

Examples

Specify Constants in Generated Code

This example shows how to specify constants in generated code using coder.const.

Write a function AddShift that takes an input Shift and adds it to the elements of
a vector. The vector consists of the square of the first 10 natural numbers. AddShift
generates this vector.

function y = AddShift(Shift) %#codegen

y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0



3 Functions — Alphabetical List

3-126

The code generation software generates code for creating the vector. It adds Shift
to each element of the vector during vector creation. The definition of AddShift in
generated code looks as follows:

void AddShift(double Shift, double y[10])

{

  int k;

  for (k = 0; k < 10; k++) {

    y[k] = (double)((1 + k) * (1 + k)) + Shift;

  }

}

Replace the statement

y = (1:10).^2+Shift;

with

y = coder.const((1:10).^2)+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0

The code generation software creates the vector containing the squares of the first 10
natural numbers. In the generated code, it adds Shift to each element of this vector.
The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])

{

  int i0;

  static const signed char iv0[10] = { 1, 4, 9, 16, 25, 36, 

                                 49, 64, 81, 100 };

  for (i0 = 0; i0 < 10; i0++) {

    y[i0] = (double)iv0[i0] + Shift;

  }

}

Create Lookup Table in Generated Code

This example shows how to fold a user-written function into a constant in generated code.



 coder.const

3-127

Write a function getsine that takes an input index and returns the element referred
to by index from a lookup table of sines. The function getsine creates the lookup table
using another function gettable.

function y = getsine(index) %#codegen

  assert(isa(index, 'int32'));

  persistent tbl;

  if isempty(tbl)

           tbl = gettable(1024);

  end

  y = tbl(index);

function y = gettable(n)

      y = zeros(1,n);

      for i = 1:n

         y(i) = sin((i-1)/(2*pi*n));

      end

Generate code for getsine using an argument of type int32. Open the Code Generation
Report.

codegen -config:lib -launchreport getsine -args int32(0)

The generated code contains instructions for creating the lookup table.

Replace the statement:

tbl = gettable(1024);

with:

tbl = coder.const(gettable(1024));

Generate code for getsine using an argument of type int32. Open the Code Generation
Report.

The generated code contains the lookup table itself. coder.const forces the expression
gettable(1024) to be evaluated during code generation. The generated code does not
contain instructions for the evaluation. The generated code contains the result of the
evaluation itself.

Specify Constants in Generated Code Using Multi-Output Function

This example shows how to specify constants in generated code using a multi-output
function in a coder.const statement.



3 Functions — Alphabetical List

3-128

Write a function MultiplyConst that takes an input factor and multiplies every
element of two vectors vec1 and vec2 with factor. The function generates vec1 and
vec2 using another function EvalConsts.

function [y1,y2] = MultiplyConst(factor) %#codegen

  [vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);

  y1=vec1.*factor;

  y2=vec2.*factor;

function [f1,f2]=EvalConsts(z,n)

  f1=z.^(2*n)/factorial(2*n);

  f2=z.^(2*n+1)/factorial(2*n+1);

Generate code for MultiplyConst using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generation software generates code for creating the vectors.

Replace the statement

[vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);

with

[vec1,vec2]=coder.const(@EvalConsts,pi.*(1./2.^(1:10)),2);

Generate code for MultiplyConst using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generation software does not generate code for creating the vectors. Instead, it
calculates the vectors and specifies the calculated vectors in generated code.

Read Constants by Processing XML File

This example shows how to call an extrinsic function using coder.const.

Write an XML file MyParams.xml containing the following statements:

<params>

    <param name="hello" value="17"/>

    <param name="world" value="42"/>



 coder.const

3-129

</params>

Save MyParams.xml in the current folder.

Write a MATLAB function xml2struct that reads an XML file. The function identifies
the XML tag param inside another tag params.

After identifying param, the function assigns the value of its attribute name to the field
name of a structure s. The function also assigns the value of attribute value to the value
of the field.

function s = xml2struct(file)

s = struct();

doc = xmlread(file);

els = doc.getElementsByTagName('params');

for i = 0:els.getLength-1

    it = els.item(i);

    ps = it.getElementsByTagName('param');

    for j = 0:ps.getLength-1

        param = ps.item(j);

        paramName = char(param.getAttribute('name'));

        paramValue = char(param.getAttribute('value'));

        paramValue = evalin('base', paramValue);

        s.(paramName) = paramValue;        

    end

end

Save xml2struct in the current folder.

Write a MATLAB function MyFunc that reads the XML file MyParams.xml into a
structure s using the function xml2struct. Declare xml2struct as extrinsic using
coder.extrinsic and call it in a coder.const statement.

function y = MyFunc(u) %#codegen

  assert(isa(u, 'double'));

  coder.extrinsic('xml2struct');

  s = coder.const(xml2struct('MyParams.xml'));

  y = s.hello + s.world + u;

Generate code for MyFunc using the codegen command. Open the Code Generation
Report.

codegen -config:dll -launchreport MyFunc -args 0



3 Functions — Alphabetical List

3-130

The code generation software executes the call to xml2struct during code generation.
It replaces the structure fields s.hello and s.world with the values 17 and 42 in
generated code.

Input Arguments

expression — MATLAB expression or user-written function
expression with constants | single-output function with constant arguments

MATLAB expression or user-defined single-output function.

The expression must have compile-time constants only. The function must take constant
arguments only. For instance, the following code leads to a code generation error, because
x is not a compile-time constant.

function y=func(x)

   y=coder.const(log10(x));

To fix the error, assign x to a constant in the MATLAB code. Alternatively, during code
generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args coder.Constant(10)

Example: 2*pi, factorial(10)

handle — Function handle
function handle

Handle to built-in or user-written function.
Example: @log, @sin

Data Types: function_handle

arg1,...,argN — Arguments to the function with handle handle
function arguments that are constants

Arguments to the function with handle handle.

The arguments must be compile-time constants. For instance, the following code leads to
a code generation error, because x and y are not compile-time constants.

function y=func(x,y)



 coder.const

3-131

   y=coder.const(@nchoosek,x,y);

To fix the error, assign x and y to constants in the MATLAB code. Alternatively, during
code generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args {coder.Constant(10),coder.Constant(2)}

Output Arguments

out — Value of expression
value of the evaluated expression

Value of expression. In the generated code, MATLAB Coder replaces occurrences of
out with the value of expression.

out1,...,outN — Outputs of the function with handle handle
values of the outputs of the function with handle handle

Outputs of the function with handle handle.MATLAB Coder evaluates the function and
replaces occurrences of out1,...,outN with constants in the generated code.

More About

Tips

• The code generation software constant-folds expressions automatically when possible.
Typically, automatic constant-folding occurs for expressions with scalars only. Use
coder.const when the code generation software does not constant-fold expressions
on its own.



3 Functions — Alphabetical List

3-132

coder.Constant class
Package: coder
Superclasses: coder.Type

Represent set containing one MATLAB value

Description

Use a coder.Constant object to define values that are constant during code generation.
Use only with the fiaccel -args options. Do not pass as an input to a generated MEX
function.

Construction

const_type=coder.Constant(v) creates a coder.Constant type from the value v.

const_type=coder.newtype('constant', v) creates a coder.Constant type from
the value v.

Input Arguments

v

Constant value used to construct the type.

Properties

Value

The actual value of the constant.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.



 coder.Constant class

3-133

Examples

Create a constant with value 42.

k = coder.Constant(42);

Create a new constant type for use in code generation.

k = coder.newtype('constant', 42);

See Also
coder.newtype | coder.Type | fiaccel



3 Functions — Alphabetical List

3-134

coder.cstructname

Package: coder

Specify structure name in generated code

Syntax

coder.cstructname(structVar,'structName')

coder.cstructname(structVar,'structName','extern')

coder.cstructname(structVar,'structName','extern',Name,Value)

coder.cstructname(structType,'structName')

coder.cstructname(structType,'structName','extern')

coder.cstructname(structType,'structName','extern',Name,Value)

Description

coder.cstructname(structVar,'structName') allows you to specify the name
of a structure in generated code. structVar is the structure variable. structName
specifies the name to use for the structure variable structVar in the generated code.
Use coder.cstructname(structVar, 'structName') in a function that is compiled
using fiaccel. Before the first use of the structure variable in your function, you must
call coder.cstructname.

coder.cstructname(structVar,'structName','extern') declares an externally
defined structure. It does not generate the definition of the structure type. Provide the
definition in a custom include file.

coder.cstructname(structVar,'structName','extern',Name,Value) uses
additional options specified by one or more Name,Value pair arguments.

coder.cstructname(structType,'structName') returns a
coder.StructType with the name structName. When the first argument is
structType, coder.cstructname is a MATLAB function. You cannot use
coder.cstructname(structType, 'structName') in a function that is compiled
using fiaccel. Use the returned type with the fiaccel -args option.



 coder.cstructname

3-135

coder.cstructname(structType,'structName','extern') returns a
coder.StructType that uses an externally defined structure. Provide the structure
definition in a custom include file.

coder.cstructname(structType,'structName','extern',Name,Value) uses
additional options specified by one or more Name,Value pair arguments.

Tips

• coder.cstructname(structVar, 'structName') is ignored outside of code
generation. Using coder.cstructname at the MATLAB command line, and then
calling codegen does not assign a name to a structure in the generated code. For
example, if function foo does not use coder.cstructname to assign a name to
structure S, the following commands do not assign the name myStruct to the
structure variable S in generated code.

coder.cstructname(S,’myStruct’);

codegen foo -args {S}

• To assign a structure name outside of code generation, use
coder.cstructname(structType, 'structName'). coder.cstructname
returns a coder.StructType object you can use with the -args option. For more
information, see “Create a coder.StructType Object” on page 3-139.

• To use coder.cstructname on arrays, use single indexing. For example, you cannot
use coder.cstructname(x(1,2)). Instead, use single indexing, for example
coder.cstructname(x(n)).

• Use of coder.cstructname with global variables is not supported.
• If you use coder.cstructname on an array, it sets the name of the base type of the

array, not the name of the array. Therefore, you cannot use coder.cstructname
on the base element and then on the array. For example, the following code does not
work. The second coder.cstructname attempts to set the name of the base type
to myStructArrayName, which conflicts with the previous coder.cstructname,
myStructName.

% Define scalar structure with field a 

myStruct = struct('a', 0); 

coder.cstructname(mystruct,'myStructName'); 

% Define array of structure with field a 

myStructArray = repmat(myStruct,k,n); 

coder.cstructname(myStructArray,'myStructArrayName'); 



3 Functions — Alphabetical List

3-136

• If you are using custom structure types, specify the name of the header file that
includes the external definition of the structure. Use the HeaderFile input
argument.

• If you have an Embedded Coder® license and use Code Replacement Libraries (CRLs),
the CRLs provide the ability to align data objects passed into a replacement function
to a specified boundary. To take advantage of target-specific function implementations
that require data to be aligned, use the Alignment input argument.

• You can also use coder.cstructname to assign a name to a substructure, which is
a structure that appears as a field of another structure. For more information, see
“Assign a Name to a SubStructure” on page 3-138.

Input Arguments

structName

The name to use for the structure in the generated code.

structType

coder.StructType object.

structVar

Structure variable.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alignment'

The run-time memory alignment of structures of this type in bytes. If you have an
Embedded Coder license and use Code Replacement Libraries (CRLs), the CRLs provide



 coder.cstructname

3-137

the ability to align data objects passed into a replacement function to a specified
boundary. This capability allows you to take advantage of target-specific function
implementations that require data to be aligned. By default, the structure is not aligned
on a specific boundary. Hence it is not matched by CRL functions that require alignment.

Alignment must be either -1 or a power of 2 that is not greater than 128.

Default: -1

'HeaderFile'

Name of the header file that contains the external definition of the structure, for
example, 'mystruct.h'.

By default, the generated code contains #include statements for custom header files
after the standard header files. If a standard header file refers to the custom structure
type, then the compilation fails. By specifying the HeaderFile option, MATLAB Coder
includes that header file exactly at the point where it is required.

Must be a non-empty string.

Examples

Apply coder.cstructname to Top-Level Inputs

Generate code for a MATLAB function that takes structure inputs.

1 Write a MATLAB function, topfun, that assigns the name MyStruct to its input
parameter.

function y = topfun(x)   %#codegen

% Assign the name 'MyStruct' to the input variable in 

% the generated code

  coder.cstructname(x, 'MyStruct');

  y = x;

end

2 Declare a structure s in MATLAB. s is the structure definition for the input variable
x.

s = struct('a',42,'b',4711);



3 Functions — Alphabetical List

3-138

3 Generate a MEX function for topfun, using the -args option to specify that the
input parameter is a structure.

fiaccel topfun.m -args { s }

codegen generates a MEX function in the default folder codegen\mex\topfun. In
this folder, the structure definition is in topfun_types.h.

typedef struct

{

    double a;

    double b;

} MyStruct;

Assign a Name to a SubStructure

Use coder.cstructname to assign a name to a substructure.

1 Define a MATLAB structure, top, that has another structure, lower, as a field.

% Define structure top with field lower, 

% which is a structure with fields a and b

top.lower = struct('a',1,'b',1);

top.c = 1;

2 Define a function, MyFunc, which takes an argument, TopVar, as input. Mark the
function for code generation using %#codegen.

function out = MyFunc(TopVar) %#codegen

3 Inside MyFunc, include the following lines

coder.cstructname(TopVar,'topType');

coder.cstructname(TopVar.lower,'lowerType');

4 Generate C code for MyFunc with an argument having the same type as top. This
ensures that TopVar has the same type as top.

codegen -config:lib MyFunc -args coder.typeof(top)

In the generated C code, the field variable TopVar.lower is assigned the type name
lowerType. For instance, the structure declaration of the variable TopVar.lower
appears in the C code as:

typedef struct

{



 coder.cstructname

3-139

    /* Definitions of a and b appear here */  

} lowerType;

and the structure declaration of the variable TopVar appears as:

typedef struct

{

     lowerType lower;

    /* Definition of c appears here */  

} topType;

Create a coder.StructType Object

Create a coder.StructType object and pass it as argument. .

S = struct('a',double(0),'b',single(0))

T = coder.typeof(S);

T = coder.cstructname(T,'mytype');

codegen -config:lib MyFile -args T 

In this example, you create a coder.StructType object T. The object is passed as a
codegen argument. However, because of the coder.cstructname statement, T is
replaced with mytype in the generated C code. For instance, the declaration of T appears
in the C code as:

typedef struct

{

    /* Field definitions appear here */  

} mytype;

Create a coder.StructType Object Using an Externally Defined Type

Create a C header file, MyFile.h, containing the definition of a structure type, mytype.

typedef struct {

    /* Field definitions */

    double a;

    float b;

   } mytype;

Save the file in the folder, C:\MyHeaders.

Define a coder.StructType object, T, with the same fields as mytype.

T = coder.typeof(struct('a',double(0),'b',single(0))); 



3 Functions — Alphabetical List

3-140

Using coder.cstructname, rename T as mytype. Specify that the definition of mytype
is in MyFile.h.

T = coder.cstructname(T,'mytype','extern','HeaderFile','MyFile.h');

Generate code for MATLAB function, MyFunc, which takes a structure of type, T,
as input argument. Add the folder, C:\MyHeaders, to the include path during code
generation.

codegen -config:lib MyFunc -args T -I C:\MyHeaders

In the generated code, the structure, T, is assigned the name, mytype. The code
generation software does not generate the definition of mytype. Instead the software
includes the header file, MyFile.h, in the generated code.

More About
• “Structures”

See Also
| coder.StructType | fiaccel



 coder.EnumType class

3-141

coder.EnumType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB enumerations

Description
Specifies the set of MATLAB enumerations that the generated code should accept. Use
only with the fiaccel -args options. Do not pass as an input to a generated MEX
function.

Construction
enum_type = coder.typeof(enum_value) creates a coder.EnumType object
representing a set of enumeration values of class (enum_value).

enum_type = coder.typeof(enum_value, sz, variable_dims) returns a
modified copy of coder.typeof(enum_value) with (upper bound) size specified by sz
and variable dimensions variable_dims. If sz specifies inf for a dimension, then the
size of the dimension is unbounded and the dimension is variable size. When sz is [],
the (upper bound) sizes of v do not change. If you do not specify variable_dims, the
bounded dimensions of the type are fixed; the unbounded dimensions are variable size.
When variable_dims is a scalar, it applies to bounded dimensions that are not 1 or 0
(which are fixed).

enum_type = coder.newtype(enum_name,sz,variable_dims) creates a
coder.EnumType object that has variable size with (upper bound) sizes sz and variable
dimensions variable_dims. If sz specifies inf for a dimension, then the size of
the dimension is unbounded and the dimension is variable size. If you do not specify
variable_dims, the bounded dimensions of the type are fixed. When variable_dims
is a scalar, it applies to bounded dimensions that are not 1 or 0 (which are fixed).

Input Arguments

enum_value

Enumeration value defined in a file on the MATLAB path.



3 Functions — Alphabetical List

3-142

sz

Size vector specifying each dimension of type object.

Default: [1 1] for coder.newtype

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size
(false).

Default: false(size(sz)) | sz==Inf for coder.newtype

enum_name

Name of a numeration defined in a file on the MATLAB path.

Properties
ClassName

Class of values in the set.

SizeVector

The upper-bound size of arrays in the set.

VariableDims

A vector specifying whether each dimension of the array is fixed or variable size. If a
vector element is true, the corresponding dimension is variable size.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples
Create a coder.EnumType object using a value from an existing MATLAB enumeration.



 coder.EnumType class

3-143

1 Define an enumeration MyColors. On the MATLAB path, create a file named
'MyColors' containing:

classdef MyColors < int32

    enumeration

        green(1),

        red(2),

    end

end

2 Create a coder.EnumType object from this enumeration.

t = coder.typeof(MyColors.red);

Create a coder.EnumType object using the name of an existing MATLAB enumeration.

1 Define an enumeration MyColors. On the MATLAB path, create a file named
'MyColors' containing:

classdef MyColors < int32

    enumeration

        green(1),

        red(2),

    end

end

2 Create a coder.EnumType object from this enumeration.

t = coder.newtype('MyColors');

See Also
coder.Type | coder.typeof | coder.resize | fiaccel | coder.ArrayType |
coder.newtype

How To
• “Enumerated Data”



3 Functions — Alphabetical List

3-144

coder.extrinsic
Package: coder

Declare extrinsic function or functions

Syntax

coder.extrinsic('function_name');

coder.extrinsic('function_name_1', ... , 'function_name_n');

coder.extrinsic('-sync:on', 'function_name');

coder.extrinsic('-sync:on', 'function_name_1', ... ,

'function_name_n');

coder.extrinsic('-sync:off','function_name');

coder.extrinsic('-sync:off', 'function_name_1', ... ,

'function_name_n');

Arguments
function_name

function_name_1, ... , function_name_n

Declares function_name or function_name_1 through function_name_n  as
extrinsic functions.

–sync:on

function_name or function_name_1 through function_name_n.

Enables synchronization of global data between MATLAB and MEX functions before
and after calls to the extrinsic functions, function_name or function_name_1
through function_name_n. If only a few extrinsic calls modify global data, turn
off synchronization before and after all extrinsic function calls by setting the global
synchronization mode to At MEX-function entry and exit. Use the –sync:on
option to turn on synchronization for only the extrinsic calls that do modify global
data.



 coder.extrinsic

3-145

–sync:off

Disables synchronization of global data between MATLAB and MEX functions before
and after calls to the extrinsic functions, function_name or function_name_1
through function_name_n. If most extrinsic calls modify global data, but a few do
not, you can use the –sync:off option to turn off synchronization for the extrinsic calls
that do not modify global data.

Description

coder.extrinsic declares extrinsic functions. During simulation, the code generation
software generates code for the call to an extrinsic function, but does not generate
the function's internal code. Therefore, simulation can run only on platforms where
MATLAB software is installed. During standalone code generation, MATLAB attempts
to determine whether the extrinsic function affects the output of the function in which
it is called — for example by returning mxArrays to an output variable. Provided that
there is no change to the output, MATLAB proceeds with code generation, but excludes
the extrinsic function from the generated code. Otherwise, compilation errors occur.

You cannot use coder.ceval on functions that you declare extrinsic by using
coder.extrinsic.

coder.extrinsic is ignored outside of code generation.

Tips
• The code generation software detects calls to many common visualization functions,

such as plot, disp, and figure. The software treats these functions like extrinsic
functions, but you do not have to declare them extrinsic using the coder.extrinsic
function.

• Use the coder.screener function to detect which functions you must declare
extrinsic. This function opens the code generations readiness tool that detects code
generation issues in your MATLAB code.

During code generation, MATLAB attempts to determine whether the extrinsic
function affects the output of the function in which it is called—for example, by
returning mxArrays to an output variable. Provided that there is no change to the
output, MATLAB proceeds with code generation, but excludes the extrinsic function
from the generated code. Otherwise, a MATLAB issues a compiler error.



3 Functions — Alphabetical List

3-146

Examples

The following code declares the MATLAB functions patch and axis extrinsic in the
MATLAB local function create_plot:

function c = pythagoras(a,b,color) %#codegen

% Calculates the hypotenuse of a right triangle

%  and displays the triangle as a patch object. 

c = sqrt(a^2 + b^2);

create_plot(a, b, color);

function create_plot(a, b, color)

%Declare patch and axis as extrinsic

coder.extrinsic('patch', 'axis'); 

x = [0;a;a];

y = [0;0;b];

patch(x, y, color);

axis('equal');

By declaring these functions extrinsic, you instruct the software not to compile or
generate code for patch and axis. Instead it dispatches these functions to MATLAB for
execution.

More About
• “Call MATLAB Functions”
• “Controlling Synchronization for Extrinsic Function Calls”
• “Resolution of Function Calls for Code Generation”
• “Restrictions on Extrinsic Functions for Code Generation”

See Also
coder.screener



 coder.FiType class

3-147

coder.FiType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB fixed-point arrays

Description

Specifies the set of fixed-point array values that the generated code should accept. Use
only with the fiaccel -args options. Do not pass as an input to the generated MEX
function.

Construction

t=coder.typeof(v) creates a coder.FiType object representing a set of fixed-point
values whose properties are based on the fixed-point input v.

t=coder.typeof(v, sz, variable_dims) returns a modified copy of
coder.typeof(v) with (upper bound) size specified by sz and variable dimensions
variable_dims. If sz specifies inf for a dimension, then the size of the dimension is
unbounded and the dimension is variable size. When sz is [], the (upper bound) sizes of
v do not change. If you do not specify the variable_dims input parameter, the bounded
dimensions of the type are fixed. When variable_dims is a scalar, it applies to the
bounded dimensions that are not 1 or 0 (which are fixed).

t=coder.newtype('embedded.fi', numerictype, sz, variable_dims) creates
a coder.Type object representing a set of fixed-point values with numerictype and
(upper bound) sizes sz and variable dimensions variable_dims. If sz specifies inf for
a dimension, then the size of the dimension is unbounded and the dimension is variable
size. When you do not specify variable_dims, the bounded dimensions of the type are
fixed. When variable_dims is a scalar, it applies to the bounded dimensions that are
not 1 or 0 (which are fixed).

t=coder.newtype('embedded.fi', numerictype, sz, variable_dims,

Name, Value) creates a coder.Type object representing a set of fixed-point values
with numerictype and additional options specified by one or more Name, Value pair



3 Functions — Alphabetical List

3-148

arguments. Name can also be a property name and Value is the corresponding value.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

v

Fixed-point value used to create new coder.FiType object.

sz

Size vector specifying each dimension of type object.

Default: [1 1] for coder.newtype

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size
(false).

Default: false(size(sz)) | sz ==Inf for coder.newtype

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'complex'

Set complex to true to create a coder.Type object that can represent complex values.
The type must support complex data.

Default: false

'fimath'

Specify local fimath. If not, uses default fimath.



 coder.FiType class

3-149

Properties

ClassName

Class of values in the set.

Complex

Indicates whether fixed-point arrays in the set are real (false) or complex (true).

Fimath

Local fimath that the fixed-point arrays in the set use.

NumericType

numerictype that the fixed-point arrays in the set use.

SizeVector

The upper-bound size of arrays in the set.

VariableDims

A vector specifying whether each dimension of the array is fixed or variable size. If a
vector element is true, the corresponding dimension is variable size.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a new fixed-point type t.

t = coder.typeof(fi(1));

% Returns

% coder.FiType



3 Functions — Alphabetical List

3-150

%   1x1 embedded.fi

%       DataTypeMode:Fixed-point: binary point scaling

%         Signedness:Signed

%         WordLength:16

%     FractionLength:14

Create a new fixed-point type for use in code generation. The fixed-point type uses the
default fimath.

t = coder.newtype('embedded.fi',numerictype(1, 16, 15), [1 2])

t = 

% Returns

% coder.FiType

%   1x2 embedded.fi 

%          DataTypeMode: Fixed-point: binary point scaling

%          Signedness: Signed

%          WordLength: 16

%          FractionLength: 15

This new type uses the default fimath.

See Also
coder.Type | coder.typeof | coder.newtype | fiaccel | coder.ArrayType |
coder.resize



 coder.FixptConfig class

3-151

coder.FixptConfig class
Package: coder

Floating-point to fixed-point conversion configuration object

Description

A coder.FixptConfig object contains the configuration parameters that the fiaccel
function requires to convert floating-point MATLAB code to fixed-point MATLAB code.
Use the -float2fixed option to pass this object to the fiaccel function.

Construction

fixptcfg = coder.config('fixpt') creates a coder.FixptConfig object for
floating-point to fixed-point conversion.

Properties

ComputeDerivedRanges

Enable derived range analysis.

Values: true|false (default)

ComputeSimulationRanges

Enable collection and reporting of simulation range data. If you need to run a long
simulation to cover the complete dynamic range of your design, consider disabling
simulation range collection and running derived range analysis instead.

Values: true (default)|false

DefaultFractionLength

Default fixed-point fraction length.

Values: 4 (default) | positive integer



3 Functions — Alphabetical List

3-152

DefaultSignedness

Default signedness of variables in the generated code.

Values: 'Automatic' (default) | 'Signed' | 'Unsigned'

DefaultWordLength

Default fixed-point word length.

Values: 14 (default) | positive integer

DetectFixptOverflows

Enable detection of overflows using scaled doubles.

Values: true| false (default)

fimath

fimath properties to use for conversion.

Values: fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',
'ProductMode', 'FullPrecision', 'SumMode', 'FullPrecision') (default) |
string

FixPtFileNameSuffix

Suffix for fixed-point file names.

Values: '_fixpt' | string

LaunchNumericTypesReport

View the numeric types report after the software has proposed fixed-point types.

Values: true (default) | false

LogIOForComparisonPlotting

Enable simulation data logging to plot the data differences introduced by fixed-point
conversion.

Values: true (default) | false



 coder.FixptConfig class

3-153

OptimizeWholeNumber

Optimize the word lengths of variables whose simulation min/max logs indicate that they
are always whole numbers.

Values: true (default) | false

PlotFunction

Name of function to use for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. This
option takes precedence over PlotWithSimulationDataInspector.

The plot function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.
• A cell array to hold the logged floating-point values for the variable.
• A cell array to hold the logged values for the variable after fixed-point conversion.

Values: '' (default) | string

PlotWithSimulationDataInspector

Use Simulation Data Inspector for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. The
PlotFunction option takes precedence over PlotWithSimulationDataInspector.

Values: true| false (default)

ProposeFractionLengthsForDefaultWordLength

Propose fixed-point types based on DefaultWordLength.

Values: true (default) | false

ProposeTargetContainerTypes

By default (false), propose data types with the minimum word length needed to represent
the value. When set to true, propose data type with the smallest word length that can
represent the range and is suitable for C code generation ( 8,16,32, 64 … ). For example,
for a variable with range [0..7], propose a word length of 8 rather than 3.



3 Functions — Alphabetical List

3-154

Values: true| false (default)

ProposeWordLengthsForDefaultFractionLength

Propose fixed-point types based on DefaultFractionLength.

Values: false (default) | true

ProposeTypesUsing

Propose data types based on simulation range data, derived ranges, or both.

Values: 'BothSimulationAndDerivedRanges' (default) |
'SimulationRanges'|'DerivedRanges'

SafetyMargin

Safety margin percentage by which to increase the simulation range when proposing
fixed-point types. The specified safety margin must be a real number greater than -100.

Values: 0 (default) | double

StaticAnalysisQuickMode

Perform faster static analysis.

Values: true | false (default)

StaticAnalysisTimeoutMinutes

Abort analysis if timeout is reached.

Values: '' (default) | positive integer

TestBenchName

Test bench function name or names, specified as a string or cell array of strings. You
must specify at least one test bench.

If you do not explicitly specify input parameter data types, the conversion uses the first
test bench function to infer these data types.

Values: '' (default) | string | cell array of strings



 coder.FixptConfig class

3-155

TestNumerics

Enable numerics testing.

Values: true| false (default)

Methods

Examples

Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation Ranges

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test. The
conversion process uses the test bench to infer input data types and collect simulation
range data.

fixptcfg.TestBenchName = 'dti_test';

Select to propose data types based on simulation ranges only. By default, proposed types
are based on both simulation and derived ranges.

fixptcfg.ProposeTypesUsing = 'SimulationRanges';

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example,
the MATLAB function name is dti.

fiaccel -float2fixed fixptcfg dti

Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation and Derived Ranges

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the name of the test bench to use to infer input data types. In this example, the test
bench function name is dti_test. The conversion process uses the test bench to infer
input data types.



3 Functions — Alphabetical List

3-156

fixptcfg.TestBenchName = 'dti_test';

Select to propose data types based on derived ranges.

fixptcfg.ProposeTypesUsing = 'DerivedRanges';

fixptcfg.ComputeDerivedRanges = true;

Add design ranges. In this example, the dti function has one scalar double input, u_in.
Set the design minimum value for u_in to -1 and the design maximum to 1.

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);

Convert the floating-point MATLAB function, dti, to fixed-point MATLAB code.

fiaccel -float2fixed fixptcfg  dti

Enable Overflow Detection

When you select to detect potential overflows, fiaccel generates a scaled double version
of the generated fixed-point MEX function. Scaled doubles store their data in double-
precision floating-point, so they carry out arithmetic in full range. They also retain their
fixed-point settings, so they are able to report when a computation goes out of the range
of the fixed-point type.

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.

fixptcfg.TestBenchName = 'dti_test';

Enable numerics testing with overflow detection.

fixptcfg.TestNumerics = true;

fixptcfg.DetectFixptOverflows = true;

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example,
the MATLAB function name is dti.

fiaccel -float2fixed fixptcfg dti

• “Propose Data Types Based on Simulation Ranges”
• “Propose Data Types Based on Derived Ranges”



 coder.FixptConfig class

3-157

• “Detect Overflows”

Alternatives

You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point
Converter app. Open the app using one of these methods:

• On the Apps tab, in the Code Generation section, click Fixed-Point Converter.
• Use the fixedPointConverter command.

See Also
coder.mexConfig | coder.mexconfig | fiaccel



3 Functions — Alphabetical List

3-158

coder.inline
Package: coder

Control inlining in generated code

Syntax

coder.inline('always')

coder.inline('never')

coder.inline('default')

Description

coder.inline('always') forces inlining of the current function in generated code.

coder.inline('never') prevents inlining of the current function in generated code.
For example, you may want to prevent inlining to simplify the mapping between the
MATLAB source code and the generated code.

coder.inline('default') uses internal heuristics to determine whether or not to
inline the current function.

In most cases, the heuristics used produce highly optimized code. Use coder.inline
only when you need to fine-tune these optimizations.

Place the coder.inline directive inside the function to which it applies. The code
generation software does not inline entry-point functions.

coder.inline('always') does not inline functions called from parfor-loops. The
code generation software does not inline functions into parfor-loops.

Examples

• “Preventing Function Inlining” on page 3-159
• “Using coder.inline In Control Flow Statements” on page 3-159



 coder.inline

3-159

Preventing Function Inlining

In this example, function foo is not inlined in the generated code:

function y = foo(x)

  coder.inline('never');

  y = x;

end

Using coder.inline In Control Flow Statements

You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and
issues a warning.

Suppose you want to generate code for a division function that will be embedded in
a system with limited memory. To optimize memory use in the generated code, the
following function, inline_division, manually controls inlining based on whether it
performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code

% than the function call itself.  

if isscalar(dividend) && isscalar(divisor)

   coder.inline('always');

else

% Vector division produces a for-loop.

% Prohibit inlining to reduce code size.

   coder.inline('never');

end

if any(divisor == 0)

   error('Can not divide by 0');

end

y = dividend / divisor;



3 Functions — Alphabetical List

3-160

coder.load
Load compile-time constants from MAT-file or ASCII file into caller workspace

Syntax

S = coder.load(filename)

S = coder.load(filename,var1,...,varN)

S = coder.load(filename,'-regexp',expr1,...,exprN)

S = coder.load(filename,'-ascii')

S = coder.load(filename,'-mat')

S = coder.load(filename,'-mat',var1,...,varN)

S = coder.load(filename,'-mat','-regexp', expr1,...,exprN)

Description

S = coder.load(filename) loads compile-time constants from filename.

• If filename is a MAT-file, then coder.load loads variables from the MAT-file into a
structure array.

• If filename is an ASCII file, then coder.load loads data into a double-precision
array.

S = coder.load(filename,var1,...,varN) loads only the specified variables from
the MAT-file filename.

S = coder.load(filename,'-regexp',expr1,...,exprN) loads only the variables
that match the specified regular expressions.

S = coder.load(filename,'-ascii') treats filename as an ASCII file, regardless of
the file extension.

S = coder.load(filename,'-mat') treats filename as a MAT-file, regardless of the
file extension.

S = coder.load(filename,'-mat',var1,...,varN) treats filename as a MAT-file
and loads only the specified variables from the file.



 coder.load

3-161

S = coder.load(filename,'-mat','-regexp', expr1,...,exprN) treats
filename as a MAT-file and loads only the variables that match the specified regular
expressions.

Examples

Load compile-time constants from MAT-file

Generate code for a function edgeDetect1 which given a normalized image, returns an
image where the edges are detected with respect to the threshold value. edgeDetect1
uses coder.load to load the edge detection kernel from a MAT-file at compile time.

Save the Sobel edge-detection kernel in a MAT-file.

k = [1 2 1; 0 0 0; -1 -2 -1];

save sobel.mat k

Write the function edgeDetect1.

function edgeImage = edgeDetect1(originalImage, threshold) %#codegen

assert(all(size(originalImage) <= [1024 1024]));

assert(isa(originalImage, 'double'));

assert(isa(threshold, 'double'));

S = coder.load('sobel.mat','k');

H = conv2(double(originalImage),S.k, 'same');

V = conv2(double(originalImage),S.k','same');

E = sqrt(H.*H + V.*V);

edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect1.

codegen -report -config cfg edgeDetect1



3 Functions — Alphabetical List

3-162

codegen generates C code in the codegen\lib\edgeDetect1 folder.

Load compile-time constants from ASCII file

Generate code for a function edgeDetect2 which given a normalized image, returns an
image where the edges are detected with respect to the threshold value. edgeDetect2
uses coder.load to load the edge detection kernel from an ASCII file at compile time.

Save the Sobel edge-detection kernel in an ASCII file.

k = [1 2 1; 0 0 0; -1 -2 -1];

save sobel.dat k -ascii

Write the function edgeDetect2.

function edgeImage = edgeDetect2(originalImage, threshold) %#codegen

assert(all(size(originalImage) <= [1024 1024]));

assert(isa(originalImage, 'double'));

assert(isa(threshold, 'double'));

k = coder.load('sobel.dat');

H = conv2(double(originalImage),k, 'same');

V = conv2(double(originalImage),k','same');

E = sqrt(H.*H + V.*V);

edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect2.

codegen -report -config cfg edgeDetect2

codegen generates C code in the codegen\lib\edgeDetect2 folder.

Input Arguments

filename — Name of file
string

Name of file, specified as a string constant.



 coder.load

3-163

filename can include a file extension and a full or partial path. If filename has no
extension, load looks for a file named filename.mat. If filename has an extension
other than .mat, load treats the file as ASCII data.

ASCII files must contain a rectangular table of numbers, with an equal number of
elements in each row. The file delimiter (the character between elements in each row)
can be a blank, comma, semicolon, or tab character. The file can contain MATLAB
comments (lines that begin with a percent sign, %).

Example: 'myFile.mat’

Data Types: char

var1,...,varN — Names of variables to load
string

Names of variables, specified as string constants. Use the * wildcard to match patterns.

Example: load('myFile.mat','A*') loads all variables in the file whose names start
with A.

Data Types: char

expr1,...,exprN — Regular expressions indicating which variables to load
string

Regular expressions indicating which variables to load, specified as string constants.
Example: load('myFile.mat', '^A', '^B') loads only variables whose names begin
with A or B.

Data Types: char

Output Arguments

S — Loaded variables or data
structure array | m-by-n array

If filename is a MAT-file, S is a structure array.

If filename is an ASCII file, S is an m-by-n array of type double. m is the number of
lines in the file and n is the number of values on a line.



3 Functions — Alphabetical List

3-164

Limitations

• coder.load does not support loading objects.
• Arguments to coder.load must be compile-time constant strings.
• The output S must be the name of a structure or array without any subscripting. For

example, S[i] = coder.load('myFile.mat') is not allowed.
• You cannot use save to save workspace data to a file inside a function intended for

code generation. The code generation software does not support the save function.
Furthermore, you cannot use coder.extrinsic with save. Prior to generating code,
you can use save to save workspace data to a file.

More About

Tips

• coder.load loads data at compile time, not at run time. If you are generating MEX
code or code for Simulink simulation, you can use the MATLAB function load to load
run-time values.

• If the MAT-file contains unsupported constructs, use
coder.load(filename,var1,...,varN) to load only the supported constructs.

• If you generate code in a MATLAB Coder project, the code generation software
practices incremental code generation for the coder.load function. When the MAT-
file or ASCII file used by coder.load changes, the software rebuilds the code.

• “Regular Expressions”

See Also
matfile | regexp | save



 coder.mexconfig

3-165

coder.mexconfig

Package: coder

Code acceleration configuration object

Syntax

config_obj = coder.mexconfig

Description

config_obj = coder.mexconfig creates a coder.MexConfig code generation
configuration object for use with fiaccel, which generates a MEX function.

Output Arguments

config_obj

Code generation configuration object for use when generating MEX functions using
fiaccel.

Examples

Create a configuration object to disable run-time checks

cfg = coder.mexconfig

% Turn off Integrity Checks, Extrinsic Calls, 

% and Responsiveness Checks

cfg.IntegrityChecks = false;

cfg.ExtrinsicCalls = false;

cfg.ResponsivenessChecks = false;

% Use fiaccel to generate a MEX function for file foo.m

fiaccel -config cfg foo



3 Functions — Alphabetical List

3-166

See Also
coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype |
coder.MexConfig | coder.resize | coder.typeof | fiaccel



 coder.newtype

3-167

coder.newtype
Package: coder

Create a new coder.Type object

Syntax

t=coder.newtype(numeric_class, sz, variable_dims)

t=coder.newtype(numeric_class, sz, variable_dims, Name, Value)

t=coder.newtype('constant', value)

t=coder.newtype('struct', struct_fields, sz, variable_dims)

t=coder.newtype('embedded.fi', numerictype, sz, variable_dims, Name,

Value)

t=coder.newtype(enum_value, sz, variable_dims)

Description

Note: coder.newtype is an advanced function. Consider using coder.typeof instead.

t=coder.newtype(numeric_class, sz, variable_dims) creates a coder.Type
object representing values of class numeric_class with (upper bound) sizes sz
and variable dimensions variable_dims. If sz specifies inf for a dimension, then
the size of the dimension is unbounded and the dimension is variable size. When
variable_dims is not specified, the dimensions of the type are fixed except for those
that are unbounded. When variable_dims is a scalar, it is applied to dimensions of the
type that are not 1 or 0, which are fixed.

t=coder.newtype(numeric_class, sz, variable_dims, Name, Value) creates
a coder.Type object with additional options specified by one or more Name, Value pair
arguments.

t=coder.newtype('constant', value) creates a coder.Constant object
representing a single value. Use this type to specify a value that should be treated as a
constant in the generated code.



3 Functions — Alphabetical List

3-168

t=coder.newtype('struct', struct_fields, sz, variable_dims)

creates a coder.StructType object for an array of structures of the given sz and
variable_dims information with the same fields as the scalar structure struct_fields.

t=coder.newtype('embedded.fi', numerictype, sz, variable_dims,

Name, Value) creates a coder.FiType object representing a set of fixed-point values
with numerictype and additional options specified by one or more Name, Value pair
arguments.

t=coder.newtype(enum_value, sz, variable_dims) creates a coder.Type object
representing a set of enumeration values of class enum_value.

Input Arguments

numeric_class

Class of the set of values represented by the type object

struct_fields

Scalar structure used to specify the fields in a new structure type

sz

Size vector specifying each dimension of type object

Default: [1 1]

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size
(false)

Default: false(size(sz)) | sz==Inf

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.



 coder.newtype

3-169

'complex'

Set complex to true to create a coder.Type object that can represent complex values.
The type must support complex data.

Default: false

'fimath'

Specify local fimath. If fimath is not specified, uses default fimath values.

Use only with t=coder.newtype('embedded.fi', numerictype,sz, variable_dims, Name,
Value).

'sparse'

Set sparse to true to create a coder.Type object representing sparse data. The type
must support sparse data.

Not for use with t=coder.newtype('embedded.fi', numerictype,sz, variable_dims, Name,
Value)

Default: false

Output Arguments

t

New coder.Type object.

Examples

Create a new type for use in code generation.

t=coder.newtype('double',[2 3 4],[1 1 0])

% Returns double :2x:3x4

% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with
fixed size



3 Functions — Alphabetical List

3-170

coder.newtype('double',[inf,3]) 

%   returns double:inf x 3

coder.newtype('double', [inf, 3], [1 0]) 

%   also returns double :inf x3

%   ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with
variable size with an upper bound of 3

coder.newtype('double', [inf,3],[0 1]) 

%  returns double :inf x :3

%  ':' indicates variable-size dimensions

Create a new structure type for use in code generation.

ta = coder.newtype('int8',[1 1]);

tb = coder.newtype('double',[1 2],[1 1]);

coder.newtype('struct',struct('a',ta,'b',tb))

% returns struct 1x1

%            a: int8 1x1

%            b: double :1x:2

% ':' indicates variable-size dimensions

Create a new constant type for use in code generation.

k = coder.newtype('constant', 42);

% Returns

% k = 

%

% coder.Constant

%       42

Create a coder.EnumType object using the name of an existing MATLAB enumeration.

1 Define an enumeration MyColors. On the MATLAB path, create a file named
'MyColors' containing:

classdef MyColors < int32

    enumeration

        green(1),

        red(2),

    end

end

2 Create a coder.EnumType object from this enumeration.



 coder.newtype

3-171

t = coder.newtype('MyColors');

Create a new fixed-point type for use in code generation. The fixed-point type uses
default fimath values.

t = coder.newtype('embedded.fi',...

   numerictype(1, 16, 15), [1 2])

t = 

% Returns

% coder.FiType

%   1x2 embedded.fi 

%     DataTypeMode: Fixed-point: binary point scaling

%     Signedness: Signed

%     WordLength: 16

%     FractionLength: 15

Alternatives

coder.typeof

See Also
coder.Type | coder.resize | coder.ArrayType | coder.EnumType |
coder.FiType | coder.PrimitiveType | coder.StructType | fiaccel



3 Functions — Alphabetical List

3-172

coder.nullcopy
Package: coder

Declare uninitialized variables

Syntax

X = coder.nullcopy(A)

Description

X = coder.nullcopy(A) copies type, size, and complexity of A to X, but does not copy
element values. Preallocates memory for X without incurring the overhead of initializing
memory.

coder.nullcopy does not support MATLAB classes as inputs.

Use With Caution

Use this function with caution. See “How to Eliminate Redundant Copies by Defining
Uninitialized Variables”.

Examples

The following example shows how to declare variable X as a 1-by-5 vector of real doubles
without performing an unnecessary initialization:

function X = foo

N = 5;

X = coder.nullcopy(zeros(1,N));

for i = 1:N

   if mod(i,2) == 0

      X(i) = i;

   else



 coder.nullcopy

3-173

      X(i) = 0;

   end

end

Using coder.nullcopy with zeros lets you specify the size of vector X without
initializing each element to zero.

More About
• “Eliminate Redundant Copies of Variables in Generated Code”



3 Functions — Alphabetical List

3-174

coder.PrimitiveType class
Package: coder
Superclasses: coder.ArrayType

Represent set of logical, numeric, or char arrays

Description

Specifies the set of logical, numeric, or char values that
the generated code should accept. Supported classes are
double,single,int8,uint8,int16,uint16,int32,uint32,int64,uint64, char,
and logical. Use only with the fiaccel -args option. Do not pass as an input to a
generated MEX function.

Construction

t=coder.typeof(v) creates a coder.PrimitiveType object denoting the smallest
non-constant type that contains v. v must be a MATLAB numeric, logical or char.

t=coder.typeof(v, sz, variable_dims) returns a modified copy of
coder.typeof(v) with (upper bound) size specified by sz and variable dimensions
variable_dims. If sz specifies inf for a dimension, then the size of the dimension
is assumed to be unbounded and the dimension is assumed to be variable sized. When
sz is [], the (upper bound) sizes of v remain unchanged. When variable_dims is not
specified, the dimensions of the type are assumed to be fixed except for those that are
unbounded. When variable_dims is a scalar, it is applied to bounded dimensions that
are not 1 or 0 (which are assumed to be fixed).

t=coder.newtype(numeric_class, sz, variable_dims) creates a
coder.PrimitiveType object representing values of class numeric_class with (upper
bound) sizes sz and variable dimensions variable_dims. If sz specifies inf for
a dimension, then the size of the dimension is assumed to be unbounded and the
dimension is assumed to be variable sized. When variable_dims is not specified, the
dimensions of the type are assumed to be fixed except for those that are unbounded.
When variable_dims is a scalar, it is applied to the dimensions of the type that are not
1 or 0 (which are assumed to be fixed).



 coder.PrimitiveType class

3-175

t=coder.newtype(numeric_class, sz, variable_dims, Name, Value) creates
a coder.PrimitiveType object with additional options specified by one or more Name,
Value pair arguments. Name can also be a property name and Value is the corresponding
value. Name must appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

v

Input that is not a coder.Type object

sz

Size for corresponding dimension of type object. Size must be a valid size vector.

Default: [1 1] for coder.newtype

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size
(false).

Default: false(size(sz)) | sz==Inf for coder.newtype

numeric_class

Class of type object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'complex'

Set complex to true to create a coder.PrimitiveType object that can represent
complex values. The type must support complex data.

Default: false



3 Functions — Alphabetical List

3-176

'sparse'

Set sparse to true to create a coder.PrimitiveType object representing sparse data.
The type must support sparse data.

Default: false

Properties

ClassName

Class of values in this set

Complex

Indicates whether the values in this set are real (false) or complex (true)

SizeVector

The upper-bound size of arrays in this set.

Sparse

Indicates whether the values in this set are sparse arrays (true)

VariableDims

A vector used to specify whether each dimension of the array is fixed or variable size. If a
vector element is true, the corresponding dimension is variable size.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a coder.PrimitiveType object.



 coder.PrimitiveType class

3-177

z = coder.typeof(0,[2 3 4],[1 1 0]) % returns double :2x:3x4

% ':' indicates variable-size dimensions

See Also
coder.Type | coder.newtype | coder.resize | coder.ArrayType |
coder.typeof | fiaccel



3 Functions — Alphabetical List

3-178

coder.resize
Package: coder

Resize a coder.Type object

Syntax

t_out = coder.resize(t, sz, variable_dims)

t_out = coder.resize(t, sz)

t_out = coder.resize(t,[],variable_dims)

t_out = coder.resize(t, sz, variable_dims, Name, Value)

t_out = coder.resize(t, 'sizelimits', limits)

Description

t_out = coder.resize(t, sz, variable_dims) returns a modified copy of
coder.Type t with upper-bound size sz, and variable dimensions variable_dims.
If variable_dims or sz are scalars, they are applied to all dimensions of t. By
default, variable_dims does not apply to dimensions where sz is 0 or 1, which are
fixed. Use the 'uniform' option to override this special case. coder.resize ignores
variable_dims for dimensions with size inf. These dimensions are always variable
size. t can be a cell array, in which case, coder.resize resizes all elements of the cell
array.

t_out = coder.resize(t, sz) resizes t to have size sz.

t_out = coder.resize(t,[],variable_dims)  changes t to have variable
dimensions variable_dims while leaving the size unchanged.

t_out = coder.resize(t, sz, variable_dims, Name, Value) resizes t using
additional options specified by one or more Name, Value pair arguments.

t_out = coder.resize(t, 'sizelimits', limits) resizes t with dimensions
automatically becoming variable based on the limits vector. When the size S of
a dimension is greater than or equal to the first threshold defined in limits, the
dimension becomes variable size with upper bound S. When the size S of a dimension is



 coder.resize

3-179

greater than or equal to the second threshold defined in limits, the dimension becomes
unbounded variable size.

Input Arguments

limits

Two-element vector (or a scalar-expanded one-element vector) of variable-sizing
thresholds. If the size sz of a dimension of t is greater than or equal to the first
threshold, the dimension becomes variable size with upper bound sz. If the size sz of a
dimension of t is greater than or equal to the second threshold, the dimension becomes
unbounded variable size.

sz

New size for coder.Type object, t_out

t

coder.Type object that you want to resize

variable_dims

Specify whether each dimension of t_out should be fixed or variable size.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'recursive'

Setting recursive to true resizes t and all types contained within it

Default: false

'uniform'

Setting uniform to true resizes t but does not apply the heuristic for dimensions of size
one.



3 Functions — Alphabetical List

3-180

Default: false

Output Arguments

t_out

Resized coder.Type object

Examples

Change a fixed-size array to a bounded variable-size array

t = coder.typeof(ones(3,3))     

% t is     3x3

coder.resize(t, [4 5], 1)       

% returns :4 x :5

% ':' indicates variable-size dimensions

Change a fixed-size array to an unbounded variable-size array

t = coder.typeof(ones(3,3))     

% t is 3x3

coder.resize(t, inf)           

% returns :inf x :inf

% ':' indicates variable-size dimensions

% 'inf' indicates unbounded dimensions

Resize a structure field

ts = coder.typeof(struct('a', ones(3, 3))) 

% returns field a as 3x3

coder.resize(ts, [5, 5], 'recursive', 1)   

% returns field a as 5x5

Make a fixed-sized array variable size based on bounded and unbounded thresholds

t = coder.typeof(ones(100,200))     

% t is 100x200

coder.resize(t,'sizelimits', [99 199])   

% returns :100x:inf

% ':' indicates variable-size dimensions



 coder.resize

3-181

% :inf is unbounded variable size

See Also
coder.typeof | coder.newtype | fiaccel



3 Functions — Alphabetical List

3-182

coder.screener

Determine if function is suitable for code generation

Syntax

coder.screener(fcn)

coder.screener(fcn_1,...,fcn_n )

Description

coder.screener(fcn) analyzes the entry-point MATLAB function, fcn. It identifies
unsupported functions and language features, such as recursion, cell arrays, nested
functions, and function handles as code generation compliance issues and displays them
in a report. If fcn calls other functions directly or indirectly that are not MathWorks®

functions, coder.screener analyzes these functions too. It does not analyze
MathWorks functions. coder.screener might not detect all code generation issues.
Under certain circumstances, it might report false errors.

coder.screener(fcn_1,...,fcn_n ) analyzes entry-point functions (fcn_1,...,fcn_n).

Input Arguments

fcn

Name of entry-point MATLAB function that you want to analyze.

fcn_1,...,fcn_n

Comma-separated list of names of entry-point MATLAB functions that you want to
analyze.



 coder.screener

3-183

Examples

Identify Unsupported Functions

The coder.screener function identifies calls to functions that are not supported for
code generation. It checks both the entry-point function, foo1, and the function foo2
that foo1 calls.

Analyze the MATLAB function foo1 that calls foo2.

function out = foo1(in)

  out = foo2(in);

  disp(out);

end

function out = foo2(in)

  out = eval(in);

end

coder.screener('foo1')

The code generation readiness report opens. It provides a summary of the unsupported
MATLAB function calls. The function foo2 calls one unsupported MATLAB function.



3 Functions — Alphabetical List

3-184

In the report, click the Code Structure tab and select Show MATLAB functions.

This tab displays a pie chart showing the relative size of each file and how suitable each
file is for code generation. In this case, the report:

• Colors foo1.m green to indicate that it is suitable for code generation.
• Colors foo2.m yellow to indicate that some significant changes are required.



 coder.screener

3-185

• Assigns foo1.m a code generation readiness score of 4 and foo2.m a score of 3. The
score is based on a scale of 1 to 5. 1 indicates that significant changes are required; 5
indicates that the code generation readiness tool cannot detect issues.

• Displays a call tree.

The report Summary tab indicates that foo2.m contains one call to the eval function
which is not supported for code generation. To generate a MEX function for foo2.m,
modify the code to make the call to eval extrinsic.



3 Functions — Alphabetical List

3-186

function out = foo2(in)

  coder.extrinsic('eval');

  out = eval(in);

end

Rerun the code generation readiness tool.

coder.screener('foo1')

The report no longer flags that the eval function is not supported for code generation.
When you generate a MEX function for foo1, the code generation software automatically
calls out to MATLAB for eval. For standalone code generation, it does not generate code
for it.

Identify Unsupported Data Types

The coder.screener function identifies data types that are not supported for code
generation.

Analyze the MATLAB function foo3 that uses unsupported data types.

function [outSparse,outCategorical] = foo3(inVal,inStr1,inStr2)

    outSparse = sparse(inVal);

    cellArray = {inStr1,inStr2};

    outCategorical = categorical(cellArray);

end

coder.screener('foo3')

The code generation readiness report opens. It provides a summary of the unsupported
data types.



 coder.screener

3-187

The report assigns the code a code readiness score of 2, indicating that the code requires
extensive changes.

Before generating code, you must fix the reported issues.

Determine code generation readiness for multiple entry-point functions

The coder.screener function identifies calls to functions that are not supported for
code generation. It checks the entry-point functions foo4 and foo5.

Analyze the MATLAB functions foo4 and foo5.

function out = foo4(in)

  out = in;

  disp(out);

end



3 Functions — Alphabetical List

3-188

function out = foo5(in)

  out = eval(in);

end

coder.screener('foo4', 'foo5')

The code generation readiness report opens. It provides a summary of the unsupported
MATLAB function calls. The function foo5 calls one unsupported MATLAB function.

In the report, click the Code Structure tab and select Show MATLAB functions.



 coder.screener

3-189

This tab displays a pie chart showing the relative size of each file and how suitable each
file is for code generation. In this case, the report:

• Colors foo1.m green to indicate that it is suitable for code generation.
• Colors foo2.m yellow to indicate that some significant changes are required.
• Assigns foo1.m a code generation readiness score of 4 and foo2.m a score of 3. The

score is based on a scale of 1 to 5. 1 indicates that significant changes are required; 5
indicates that the code generation readiness tool cannot detect issues.

• Displays a call tree.



3 Functions — Alphabetical List

3-190

Alternatives

• “Run the Code Generation Readiness Tool From the Current Folder Browser”



 coder.screener

3-191

More About

Tips

• Before using coder.screener, fix issues identified by the code analyzer.
• Before generating code, use coder.screener to check that a function is suitable for

code generation. Fix all the issues that it detects.

• “Functions Supported for Code Acceleration or C Code Generation”
• “Code Generation Readiness Tool”

See Also
fiaccel



3 Functions — Alphabetical List

3-192

coder.StructType class

Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB structure arrays

Description

Specifies the set of structure arrays that the generated code should accept. Use only with
the fiaccel -args option. Do not pass as an input to a generated MEX function.

Construction

t=coder.typeof(struct_v) creates a coder.StructType object for a structure with
the same fields as the scalar structure struct_v.

t=coder.typeof(struct_v, sz, variable_dims) returns a modified copy of
coder.typeof(struct_v) with (upper bound) size specified by sz and variable
dimensions variable_dims. If sz specifies inf for a dimension, then the size of the
dimension is assumed to be unbounded and the dimension is assumed to be variable
sized. When sz is [], the (upper bound) sizes of struct_v remain unchanged. If the
variable_dims input parameter is not specified, the dimensions of the type are
assumed to be fixed except for those that are unbounded. When variable_dims is a
scalar, it is applied to the bounded dimensions that are not 1 or 0 (which are assumed to
be fixed).

t=coder.newtype('struct', struct_v, sz, variable_dims) creates a
coder.StructType object for an array of structures with the same fields as the scalar
structure struct_v and (upper bound) size sz and variable dimensions variable_dims.
If sz specifies inf for a dimension, then the size of the dimension is assumed to be
unbounded and the dimension is assumed to be variable sized. When variable_dims is
not specified, the dimensions of the type are assumed to be fixed except for those that are
unbounded. When variable_dims is a scalar, it is applied to the dimensions of the type,
except if the dimension is 1 or 0, which is assumed to be fixed.



 coder.StructType class

3-193

Input Arguments

struct_v

Scalar structure used to specify the fields in a new structure type.

sz

Size vector specifying each dimension of type object.

Default: [1 1] for coder.newtype

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size
(false).

Default: false(size(sz)) | sz==Inf for coder.newtype

Properties

Alignment

The run-time memory alignment of structures of this type in bytes. If you have an
Embedded Coder license and use Code Replacement Libraries (CRLs), the CRLs provide
the ability to align data objects passed into a replacement function to a specified
boundary. This capability allows you to take advantage of target-specific function
implementations that require data to be aligned. By default, the structure is not aligned
on a specific boundary so it will not be matched by CRL functions that require alignment.

Alignment must be either -1 or a power of 2 that is no more than 128.

ClassName

Class of values in this set.

Extern

Whether the structure type is externally defined.

Fields

A structure giving the coder.Type of each field in the structure.



3 Functions — Alphabetical List

3-194

HeaderFile

If the structure type is externally defined, name of the header file that contains the
external definition of the structure, for example, "mystruct.h".

By default, the generated code contains #include statements for custom header files
after the standard header files. If a standard header file refers to the custom structure
type, then the compilation fails. By specifying the HeaderFile option, MATLAB Coder
includes that header file exactly at the point where it is required.

Must be a non-empty string.

SizeVector

The upper-bound size of arrays in this set.

VariableDims

A vector used to specify whether each dimension of the array is fixed or variable size. If a
vector element is true, the corresponding dimension is variable size.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a type for a structure with a variable-size field.

x.a = coder.typeof(0,[3 5],1);

x.b = magic(3);

coder.typeof(x)

% Returns 

% coder.StructType

%    1x1 struct

%      a:  :3x:5 double

%      b:  3x3  double

% ':' indicates variable-size dimensions



 coder.StructType class

3-195

Create a coder.StructType object that uses an externally-defined structure type.

1 Create a type that uses an externally-defined structure type.

S.a = coder.typeof(double(0));

S.b = coder.typeof(single(0));

T = coder.typeof(S);

T = coder.cstructname(T,'mytype','extern','HeaderFile','myheader.h');

T = 

coder.StructType

   1x1 extern mytype (myheader.h) struct

      a: 1x1 double 

      b: 1x1 single

2 View the types of the structure fields.

T.Fields

ans = 

    a: [1x1 coder.PrimitiveType]

    b: [1x1 coder.PrimitiveType]

See Also
coder.Type | coder.newtype | coder.resize | | coder.PrimitiveType |
coder.EnumType | coder.FiType | coder.Constant | coder.ArrayType |
coder.typeof | fiaccel



3 Functions — Alphabetical List

3-196

coder.target
Determine if code generation target is specified target

Syntax

tf = coder.target(target)

Description

tf = coder.target(target) returns true (1) if the code generation target is target.
Otherwise, it returns false (0).

If you generate code for MATLAB classes, MATLAB computes class initial values at
class loading time before code generation. If you use coder.target in MATLAB class
property initialization, coder.target('MATLAB') returns true.

Examples

Use coder.target to parameterize a MATLAB function

Parameterize a MATLAB function so that it works in MATLAB or generated code. When
the function runs in MATLAB, it calls the MATLAB function myabsval. The generated
code, however, calls a C library function myabsval.

Write a MATLAB function myabsval.

function y = myabsval(u)   %#codegen

y = abs(u);

Generate the C library for myabsval.m, using the -args option to specify the size, type,
and complexity of the input parameter.

codegen -config:lib myabsval -args {0.0}

codegen creates the library myabsval.lib and header file myabsval.h in the folder /
codegen/lib/myabsval. It also generates the functions myabsval_initialize and
myabsval_terminate in the same folder.



 coder.target

3-197

Write a MATLAB function to call the generated C library function using coder.ceval.

function y = callmyabsval  %#codegen

y = -2.75;

% Check the target. Do not use coder.ceval if callmyabsval is

% executing in MATLAB

if coder.target('MATLAB')

  % Executing in MATLAB, call function myabsval

  y = myabsval(y);

else

  % Executing in the generated code. 

  % Call the initialize function before calling the 

  % C function for the first time

  coder.ceval('myabsval_initialize');

  % Call the generated C library function myabsval

  y = coder.ceval('myabsval',y);

  

  % Call the terminate function after

  % calling the C function for the last time

  coder.ceval('myabsval_terminate');

end

Convert callmyabsval.m to the MEX function callmyabsval_mex.

codegen -config:mex callmyabsval codegen/lib/myabsval/myabsval.lib...

     codegen/lib/myabsval/myabsval.h

Run the MATLAB function callmyabsval .

callmyabsval

ans =

    2.7500

Run the MEX function callmyabsval_mex which calls the library function myabsval.

callmyabsval_mex

ans =



3 Functions — Alphabetical List

3-198

    2.7500

Input Arguments

target — code generation target
string

Code generation target specified as one of the following strings:

'MATLAB' Running in MATLAB (not generating code)
'MEX' Generating a MEX function
'Sfun' Simulating a Simulink model
'Rtw' Generating a LIB, DLL, or EXE target
'HDL ' Generating an HDL target
'Custom' Generating a custom target

Example: tf = coder.target('MATLAB')

Data Types: char



 coder.Type class

3-199

coder.Type class
Package: coder

Represent set of MATLAB values

Description

Specifies the set of values that the generated code should accept. Use only with the
fiaccel -args option. Do not pass as an input to a generated MEX function.

Construction

coder.Type is an abstract class, and you cannot create instances of it directly. You can
create coder.Constant, coder.EnumType, coder.FiType, coder.PrimitiveType,
and coder.StructType objects that are derived from this class.

Properties

ClassName

Class of values in this set

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
coder.newtype | coder.resize | coder.StructType | coder.PrimitiveType
| coder.EnumType | coder.FiType | coder.Constant | coder.ArrayType |
coder.typeof | fiaccel



3 Functions — Alphabetical List

3-200

coder.typeof
Package: coder

Convert MATLAB value into its canonical type

Syntax

t=coder.typeof(v)

t=coder.typeof(v, sz, variable_dims)

t=coder.typeof(t)

Description

t=coder.typeof(v) creates a coder.Type object denoting the smallest nonconstant
type that contains v. v must be a MATLAB numeric, logical, char, enumeration or fixed-
point array, or a struct constructed from the preceding types. Use coder.typeof to
specify only input parameter types. For example, use it with the fiaccel function -
args option. Do not use it in MATLAB code from which you intend to generate a MEX
function.

t=coder.typeof(v, sz, variable_dims) returns a modified copy of
t=coder.typeof(v) with (upper bound) size specified by sz and variable dimensions
variable_dims. If sz specifies inf for a dimension, then the size of the dimension is
unbounded and the dimension is variable size. When sz is [], the (upper bound) sizes
of v remain unchanged. If you do not specify the variable_dims input parameter, the
bounded dimensions of the type are fixed. When variable_dims is a scalar, it is applied
to bounded dimensions or dimensions that are 1 or 0, which are fixed.

t=coder.typeof(t), where t is a coder.Type object, returns t itself.

Input Arguments

sz

Size vector specifying each dimension of type object



 coder.typeof

3-201

t

coder.Type object

v

MATLAB expression that describes the set of values represented by this type.

v must be a MATLAB numeric, logical, char, enumeration or fixed-point array, or a
struct constructed from the preceding types.

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size
(false).

Default: false(size(sz)) | sz==Inf

Output Arguments

t

coder.Type object

Examples

Create a type for a simple fixed-size 5x6 matrix of doubles.

coder.typeof(ones(5, 6))         

 % returns 5x6 double

coder.typeof(0, [5 6])           

 % also returns 5x6 double

Create a type for a variable-size matrix of doubles.

coder.typeof(ones(3,3), [], 1)    

% returns :3 x :3 double

% ':' indicates variable-size dimensions

Create a type for a structure with a variable-size field.



3 Functions — Alphabetical List

3-202

x.a = coder.typeof(0,[3 5],1);

x.b = magic(3);

coder.typeof(x)

% Returns 

% coder.StructType

%    1x1 struct

%      a:  :3x:5 double

%      b:  3x3  double

% ':' indicates variable-size dimensions

Create a type for a matrix with fixed-size and variable-size dimensions.

coder.typeof(0, [2,3,4], [1 0 1]);

% Returns :2x3x:4 double 

% ':' indicates variable-size dimensions

coder.typeof(10, [1 5], 1) 

% returns double 1 x  :5

% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with
fixed size.

coder.typeof(10,[inf,3]) 

% returns double:inf x 3

% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with
variable size with an upper bound of 3.

coder.typeof(10, [inf,3],[0 1]) 

% returns double :inf x :3

% ':' indicates variable-size dimensions

Convert a fixed-sized matrix to a variable-sized matrix.

 coder.typeof(ones(5,5), [], 1) 

% returns double :5x:5

% ':' indicates variable-size dimensions

Create a nested structure (a structure as a field of another structure).

S = struct('a',double(0),'b',single(0))

SuperS.x = coder.typeof(S)

SuperS.y = single(0)



 coder.typeof

3-203

coder.typeof(SuperS)  

% Returns 

% coder.StructType

% SuperS:  1x1 struct

%   with fields 

%      x:  1x1 struct

%         with fields

%             a: 1x1 double

%             b: 1x1 single

%      y:  1x1  single

Create a structure containing a variable-size array of structures as a field.

S = struct('a',double(0),'b',single(0))

SuperS.x = coder.typeof(S,[1 inf],[0 1])

SuperS.y = single(0)

coder.typeof(SuperS)  

% Returns 

% coder.StructType

% SuperS:  1x1 struct

%   with fields 

%      x:  1x:inf struct

%         with fields

%             a: 1x1 double

%             b: 1x1 single

%      y:  1x1  single

% ':' indicates variable-size dimensions

Tips

• If you are already specifying the type of an input variable using a type function, do
not use coder.typeof unless you also want to specify the size. For instance, instead
of coder.typeof(single(0)), use the syntax single(0).

See Also
coder.newtype | coder.resize | fiaccel



3 Functions — Alphabetical List

3-204

coder.unroll
Package: coder

Copy body of for-loop in generated code for each iteration

Syntax

for i = coder.unroll(range)

for i = coder.unroll(range,flag)

Description

for i = coder.unroll(range) copies the body of a for-loop (unrolls a for-loop) in
generated code for each iteration specified by the bounds in range. i is the loop counter
variable.

for i = coder.unroll(range,flag) unrolls a for-loop as specified in range if
flag is true.

You must use coder.unroll in a for-loop header. coder.unroll modifies the
generated code, but does not change the computed results.

coder.unroll must be able to evaluate the bounds of the for-loop at compile time. The
number of iterations cannot exceed 1024; unrolling large loops can increase compile time
significantly and generate inefficient code

This function is ignored outside of code generation.

Input Arguments

flag

Boolean expression that indicates whether to unroll the for-loop:

true Unroll the for-loop



 coder.unroll

3-205

false Do not unroll the for-loop

range

Specifies the bounds of the for-loop iteration:

init_val : end_val Iterate from init_val to end_val, using
an increment of 1

init_val : step_val : end_val Iterate from init_val to end_val, using
step_val as an increment if positive or as
a decrement if negative

Matrix variable Iterate for a number of times equal to the
number of columns in the matrix

Examples

To limit the number of times to copy the body of a for-loop in generated code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a vector
of length n and assign random numbers to specific elements. Add a test function
test_unroll. This function calls getrand(n) with n equal to values both less than
and greater than the threshold for copying the for-loop in generated code.

function [y1, y2] = test_unroll() %#codegen

% The directive %#codegen indicates that the function

% is intended for code generation

  % Calling getrand 8 times triggers unroll

  y1 = getrand(8);

  % Calling getrand 50 times does not trigger unroll

  y2 = getrand(50);

 

function y = getrand(n)

  % Turn off inlining to make 

  % generated code easier to read

  coder.inline('never');

  % Set flag variable dounroll to repeat loop body

  % only for fewer than 10 iterations

  dounroll = n < 10;

  % Declare size, class, and complexity



3 Functions — Alphabetical List

3-206

  % of variable y by assignment

  y = zeros(n, 1);

  % Loop body begins

  for i = coder.unroll(1:2:n, dounroll)

      if (i > 2) && (i < n-2) 

          y(i) = rand();

      end;

  end;

  % Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C static library
code for test_unroll :

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body of the
for-loop (unrolls the loop) because the number of iterations is less than 10:

static void getrand(double y[8])

{

  /*  Turn off inlining to make  */

  /*  generated code easier to read */

  /*  Set flag variable dounroll to repeat loop body */

  /*  only for fewer than 10 iterations */

  /*  Declare size, class, and complexity */

  /*  of variable y by assignment */

  memset(&y[0], 0, sizeof(double) << 3);

  /*  Loop body begins */

  y[2] = b_rand();

  y[4] = b_rand();

  /*  Loop body ends */

}

The generated C code for getrand(50) does not unroll the for-loop because the
number of iterations is greater than 10:

static void b_getrand(double y[50])

{

  int i;

  int b_i;

  /*  Turn off inlining to make  */

  /*  generated code easier to read */



 coder.unroll

3-207

  /*  Set flag variable dounroll to repeat loop body */

  /*  only for fewer than 10 iterations */

  /*  Declare size, class, and complexity */

  /*  of variable y by assignment */

  memset(&y[0], 0, 50U * sizeof(double));

  /*  Loop body begins */

  for (i = 0; i < 25; i++) {

    b_i = (i << 1) + 1;

    if ((b_i > 2) && (b_i < 48)) {

      y[b_i - 1] = b_rand();

    }

  }

More About
• “ Using Logicals in Array Indexing”

See Also
| | for | coder.inline | coder.nullcopy



3 Functions — Alphabetical List

3-208

coder.varsize
Package: coder

Declare variable-size data

Syntax

coder.varsize('var1', 'var2', ...)

coder.varsize('var1', 'var2', ..., ubound)

coder.varsize('var1', 'var2', ..., ubound, dims)

coder.varsize('var1', 'var2', ..., [], dims)

Description

coder.varsize('var1', 'var2', ...) declares one or more variables as variable-
size data, allowing subsequent assignments to extend their size. Each 'varn' must
be a quoted string that represents a variable or structure field. If the structure field
belongs to an array of structures, use colon (:) as the index expression to make
the field variable-size for all elements of the array. For example, the expression
coder.varsize('data(:).A') declares that the field A inside each element of data is
variable sized.

coder.varsize('var1', 'var2', ..., ubound) declares one or more variables
as variable-size data with an explicit upper bound specified in ubound. The argument
ubound must be a constant, integer-valued vector of upper bound sizes for every
dimension of each 'varn'. If you specify more than one 'varn', each variable must have
the same number of dimensions.

coder.varsize('var1', 'var2', ..., ubound, dims) declares one or more
variables as variable-sized with an explicit upper bound and a mix of fixed and varying
dimensions specified in dims. The argument dims is a logical vector, or double vector
containing only zeros and ones. Dimensions that correspond to zeros or false in dims
have fixed size; dimensions that correspond to ones or true vary in size. If you specify
more than one variable, each fixed dimension must have the same value across all
'varn'.



 coder.varsize

3-209

coder.varsize('var1', 'var2', ..., [], dims) declares one or more variables
as variable-sized with a mix of fixed and varying dimensions. The empty vector [] means
that you do not specify an explicit upper bound.

When you do not specify ubound, the upper bound is computed for each 'varn' in
generated code.

When you do not specify dims, dimensions are assumed to be variable except the
singleton ones. A singleton dimension is a dimension for which size(A,dim) = 1.

You must add the coder.varsize declaration before each 'varn' is used (read). You
may add the declaration before the first assignment to each 'varn'.

coder.varsize cannot be applied to global variables.

coder.varsize is not supported for MATLAB class properties.

You cannot use coder.varsize outside the MATLAB code intended for code generation.
For example, the following code does not declare the variable, var, as variable-size data:

coder.varsize('var',10);

codegen -config:lib MyFile -args var

Instead, include the coder.varsize statement inside MyFile to declare var as
variable-size data. Alternatively, you can use coder.typeof to declare var as variable-
size outside MyFile. It can then be passed to MyFile during code generation using the -
args option. For more information, see coder.typeof.

Examples

Develop a simple stack that varies in size up to 32 elements as you push and pop data at run
time.

Write primary function test_stack to issue commands for pushing data on and popping
data from a stack.

function test_stack %#codegen

    % The directive %#codegen indicates that the function

    % is intended for code generation

    stack('init', 32);



3 Functions — Alphabetical List

3-210

    for i = 1 : 20

        stack('push', i);

    end

    for i = 1 : 10

        value = stack('pop');

        % Display popped value

        value

    end

end

Write local function stack to execute the push and pop commands.

function y = stack(command, varargin)

    persistent data;

    if isempty(data)

        data = ones(1,0);

    end

    y = 0;

    switch (command)

    case {'init'}

        coder.varsize('data', [1, varargin{1}], [0 1]);

        data = ones(1,0);

    case {'pop'}

        y = data(1);

        data = data(2:size(data, 2));

    case {'push'}

        data = [varargin{1}, data];

    otherwise

        assert(false, ['Wrong command: ', command]);

    end

end

The variable data is the stack. The statement coder.varsize('data', [1,
varargin{1}], [0 1]) declares that:

• data is a row vector
• Its first dimension has a fixed size
• Its second dimension can grow to an upper bound of 32

Generate a MEX function for test_stack:

codegen -config:mex test_stack

codegen generates a MEX function in the current folder.



 coder.varsize

3-211

Run test_stack to get these results:

value =

    20

value =

    19

value =

    18

value =

    17

value =

    16

value =

    15

value =

    14

value =

    13

value =

    12

value =

    11

At run time, the number of items in the stack grows from zero to 20, and then shrinks to
10.

Declare a variable-size structure field.

Write a function struct_example that declares an array data, where each element is a
structure that contains a variable-size field:

function y=struct_example() %#codegen

  d = struct('values', zeros(1,0), 'color', 0);

  data = repmat(d, [3 3]);

  coder.varsize('data(:).values');



3 Functions — Alphabetical List

3-212

  for i = 1:numel(data)

      data(i).color = rand-0.5;

      data(i).values = 1:i;

  end

  y = 0;

  for i = 1:numel(data)

      if data(i).color > 0

          y = y + sum(data(i).values);

      end;

  end

The statement coder.varsize('data(:).values') marks as variable-size the field
values inside each element of the matrix data.

Generate a MEX function for struct_example:

codegen -config:mex struct_example

Run struct_example.

Each time you run struct_example you get a different answer because the function
loads the array with random numbers.

More About

Tips

• If you use input variables (or result of a computation using input variables) to specify
the size of an array, it is declared as variable-size in the generated code. Do not use
coder.varsize on the array again, unless you also want to specify an upper bound
for its size.

• Using coder.varsize on an array without explicit upper bounds causes dynamic
memory allocation of the array. This can reduce speed of generated code. To avoid
this, use the syntax coder.varsize('var1', 'var2', ..., ubound) to specify
an upper bound for the array size (if you know it in advance).

• “Variable-Size Data Definition for Code Generation”
• “Defining Variable-Size Structure Fields”
• “Compilation Directive %#codegen”



 coder.varsize

3-213

• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation”

See Also
assert | fiaccel | size | varargin



3 Functions — Alphabetical List

3-214

colon

Create vectors, array subscripting

Syntax

y = j:k

y = j:i:k

Description

y = j:k returns a regularly-spaced vector, [j, j+1 ,..., k]. j:k is empty when j > k.

At least one of the colon operands must be a fi object. All colon operands must have
integer values. All the fixed-point operands must be binary-point scaled. Slope-bias
scaling is not supported. If any of the operands is complex, the colon function generates
a warning and uses only the real part of the operands.

y = colon(j,k) is the same as y = j:k.

y = j:i:k returns a regularly-spaced vector, [j,j+i,j+2i, ...,j+m*i], where m =
fix((k-j)/i). y = j:i:k returns an empty matrix wheni == 0, i > 0 and j > k,
or i < 0 and j < k.

Examples

Use fi as a Colon Operator

When you use fi as a colon operator, all colon operands must have integer values.

a=fi(1,0,3,0);

b=fi(2,0,8,0);

c=fi(12,0,8,0);

x=a:b:c



 colon

3-215

x = 

     1     3     5     7     9    11

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 8

        FractionLength: 0

Because all the input operands are unsigned, x is unsigned and the word length is 8. The
fraction length of the resulting vector is always 0.

Use the colon Operator With Signed and Unsigned Operands

a= fi(int8(-1));

b = uint8(255);

c = a:b;

len = c.WordLength

signedness = c.Signedness

len =

     9

signedness =

Signed

The word length of c requires an additional bit to handle the intersection of the ranges of
int8 and uint8. The data type of c is signed because the operand a is signed.

Create a Vector of Decreasing Values

If the beginning and ending operands are unsigned, the increment operand can be
negative.

x = fi(4,false):-1:1

x = 

   4      3      2      1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 16



3 Functions — Alphabetical List

3-216

        FractionLength: 0

Use colon Operator With Floating-Point and fi operands

If any of the operands is floating-point, the output has the same word length and
signedness as the fi operand

x = fi(1):10

x = 

  Columns 1 through 6

     1     2     3     4     5     6

  Columns 7 through 10

     7     8     9    10

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 0

x = fi(1):10 is equivalent to fi(1:10,true,16,0) so x is signed and its word
length is 16 bits.

Rewrite Code That Uses Non-Integer Operands

If your code uses non-integer operands, rewrite the colon expression so that the operands
are integers.

The following code does not work because the colon operands are not integer values.

Fs = fi(100);

n = 1000;

t  = (0:1/Fs:(n/Fs - 1/Fs));

Rewrite the colon expression to use integer operands.

Fs = fi(100);

n = 1000;

t  = (0:(n-1))/Fs;

All Colon Operands Must Be in the Range of the Data Type

If the value of any of the colon operands is outside the range of the data type used in the
colon expression, MATLAB generates an error.

    y = fi(1,true,8,0):256



 colon

3-217

MATLAB generates an error because 256 is outside the range of fi(1,true,
8,0). This behavior matches the behavior for built-in integers. For example, y =
int8(1):256 generates the same error.

Input Arguments

j — Beginning operand
real scalar

Beginning operand, specified as a real scalar integer-valued fi object or built-in numeric
type.

If you specify non-scalar arrays, MATLAB interprets j:i:k as j(1):i(1):k(1).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

i — Increment
1 (default) | real scalar

Increment, specified as a real scalar integer-valued fi object or built-in numeric type.
Even if the beginning and end operands, j and k, are both unsigned, the increment
operand i can be negative.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

k — Ending operand
real scalar

Ending operand, specified as a real scalar integer-valued fi object or built-in numeric
type.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output Arguments

y — Regularly-spaced vector
real vector



3 Functions — Alphabetical List

3-218

Fixed-Point Designer determines the data type of the y using the following rules:

• The data type covers the union of the ranges of the fixed-point types of the input
operands.

• If either the beginning or ending operand is signed, the resulting data type is signed.
Otherwise, the resulting data type is unsigned.

• The word length of y is the smallest value such that the fraction length is 0 and the
real-world value of the least-significant bit is 1.

• If any of the operands is floating-point, the word length and signedness of y is derived
from the fi operand.

• If any of the operands is a scaled double, y is a scaled double.
• The fimath of y is the same as the fimath of the input operands.
• If all the fi objects are of data type double, the data type of y is double. If all

the fi objects are of data type single, the data type of y is single. If there are
both double and single inputs, and no fixed-point inputs, the output data type is
single.

See Also
colon | fi



 comet

3-219

comet
Create 2-D comet plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB comet reference page for more information.



3 Functions — Alphabetical List

3-220

comet3
Create 3-D comet plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB comet3 reference page for more information.



 compass

3-221

compass
Plot arrows emanating from origin

Description

This function accepts fi objects as inputs.

Refer to the MATLAB compass reference page for more information.



3 Functions — Alphabetical List

3-222

complex
Construct complex fi object from real and imaginary parts

Syntax

c = complex(a,b)

c = complex(a)

c = complex(a)

Description

The complex function constructs a complex fi object from real and imaginary parts.

c = complex(a,b) returns the complex result a + bi, where a and b are identically
sized real N-D arrays, matrices, or scalars of the same data type. When b is all zero, c
is complex with an all-zero imaginary part. This is in contrast to the addition of a + 0i,
which returns a strictly real result.

c = complex(a) for a real fi object a returns the complex result a + bi with real
part a and an all-zero imaginary part. Even though its imaginary part is all zero, c is
complex.

c = complex(a) returns the complex equivalent of a, such that isreal(c) returns
logical 0 (false). If a is real, then c is a + 0i. If a is complex, then c is identical to a.

The output fi object c has the same numerictype and fimath properties as the input
fi object a.

See Also
imag | real



 coneplot

3-223

coneplot
Plot velocity vectors as cones in 3-D vector field

Description

This function accepts fi objects as inputs.

Refer to the MATLAB coneplot reference page for more information.



3 Functions — Alphabetical List

3-224

conj
Complex conjugate of fi object

Syntax

conj(a)

Description

conj(a) is the complex conjugate of fi object a.

When a is complex,

conj( ) real( ) imag( )a a i a= - ¥

The numerictype and fimath properties associated with the input a are applied to the
output.

See Also
complex | imag | real



 contour

3-225

contour
Create contour graph of matrix

Description

This function accepts fi objects as inputs.

Refer to the MATLAB contour reference page for more information.



3 Functions — Alphabetical List

3-226

contour3
Create 3-D contour plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB contour3 reference page for more information.



 contourc

3-227

contourc
Create two-level contour plot computation

Description

This function accepts fi objects as inputs.

Refer to the MATLAB contourc reference page for more information.



3 Functions — Alphabetical List

3-228

contourf
Create filled 2-D contour plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB contourf reference page for more information.



 conv

3-229

conv
Convolution and polynomial multiplication of fi objects

Syntax

c = conv(a,b)

c = conv(a,b,'shape')

Description

c = conv(a,b) outputs the convolution of input vectors a and b, at least one of which
must be a fi object.

c = conv(a,b,'shape') returns a subsection of the convolution, as specified by the
shape parameter:

• full — Returns the full convolution. This option is the default shape.
• same — Returns the central part of the convolution that is the same size as input

vector a.
• valid — Returns only those parts of the convolution that the function computes

without zero-padded edges. In this case, the length of output vector c is
max(length(a)-max(0,length(b)-1), 0).

The fimath properties associated with the inputs determine the numerictype
properties of output fi object c:

• If either a or b has a local fimath object, conv uses that fimath object to compute
intermediate quantities and determine the numerictype properties of c.

• If neither a nor b have an attached fimath, conv uses the default fimath to compute
intermediate quantities and determine the numerictype properties of c.

If either input is a built-in data type, conv casts it into a fi object using best-precision
rules before the performing the convolution operation.

The output fi object c always uses the default fimath.



3 Functions — Alphabetical List

3-230

Refer to the MATLAB conv reference page for more information on the convolution
algorithm.

Examples

The following example illustrates the convolution of a 22-sample sequence with a 16-tap
FIR filter.

• x is a 22-sample sequence of signed values with a word length of 16 bits and a fraction
length of 15 bits.

• h is the 16 tap FIR filter.

  u = (pi/4)*[1 1 1 -1 -1 -1 1 -1 -1 1 -1]; 

  x = fi(kron(u,[1 1]));

  h = firls(15, [0 .1 .2 .5]*2, [1 1 0 0]);

Because x is a fi object, you do not need to cast h into a fi object before performing the
convolution operation. The conv function does so using best-precision scaling.

Finally, use the conv function to convolve the two vectors:

 y = conv(x,h);

The operation results in a signed fi object y with a word length of 36 bits and a fraction
length of 31 bits. The default fimath properties associated with the inputs determine the
numerictype of the output. The output does not have a local fimath.

See Also
conv



 convergent

3-231

convergent

Round toward nearest integer with ties rounding to nearest even integer

Syntax

y = convergent(a)

y = convergent(x)

Description

y = convergent(a) rounds fi object a to the nearest integer. In the case of a tie,
convergent(a) rounds to the nearest even integer.

y and a have the same fimath object and DataType property.

When the DataType property of a is single, double, or boolean, the numerictype of
y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer, and the
numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0, its sign is the
same as that of a, and its word length is the difference between the word length and the
fraction length of a, plus one bit. If a is signed, then the minimum word length of y is 2.
If a is unsigned, then the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded independently.

convergent does not support fi objects with nontrivial slope and bias scaling. Slope
and bias scaling is trivial when the slope is an integer power of 2 and the bias is 0.

y = convergent(x) rounds the elements of x to the nearest integer. In the case of a
tie, convergent(x) rounds to the nearest even integer.



3 Functions — Alphabetical List

3-232

Examples

Example 1

The following example demonstrates how the convergent function affects the
numerictype properties of a signed fi object with a word length of 8 and a fraction
length of 3.

a = fi(pi, 1, 8, 3) 

a =

 

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

y = convergent(a) 

y =

 

     3

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 6

        FractionLength: 0

Example 2

The following example demonstrates how the convergent function affects the
numerictype properties of a signed fi object with a word length of 8 and a fraction
length of 12.

a = fi(0.025,1,8,12) 

a =

 

    0.0249



 convergent

3-233

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 12

y = convergent(a) 

y =

 

     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 2

        FractionLength: 0

Example 3

The functions convergent, nearest and round differ in the way they treat values
whose least significant digit is 5:

• The convergent function rounds ties to the nearest even integer
• The nearest function rounds ties to the nearest integer toward positive infinity
• The round function rounds ties to the nearest integer with greater absolute value

The following table illustrates these differences for a given fi object a.

a convergent(a) nearest(a) round(a)

–3.5 –4 –3 –4
–2.5 –2 –2 –3
–1.5 –2 –1 –2
–0.5 0 0 –1
0.5 0 1 1
1.5 2 2 2
2.5 2 3 3
3.5 4 4 4



3 Functions — Alphabetical List

3-234

See Also
ceil | fix | floor | nearest | round



 copyobj

3-235

copyobj
Make independent copy of quantizer object

Syntax

q1 = copyobj(q)

[q1,q2,...] = copyobj(obja,objb,...)

Description

q1 = copyobj(q) makes a copy of quantizer object q and returns it in q1.

[q1,q2,...] = copyobj(obja,objb,...)copies obja into q1, objb into q2, and so
on.

Using copyobj to copy a quantizer object is not the same as using the command
syntax q1 = q to copy a quantizer object. quantizer objects have memory (their
read-only properties). When you use copyobj, the resulting copy is independent of the
original item; it does not share the original object's memory, such as the values of the
properties min, max, noverflows, or noperations. Using q1 = q creates a new object
that is an alias for the original and shares the original object's memory, and thus its
property values.

Examples
q = quantizer([8 7]);

q1 = copyobj(q)

See Also
quantizer | get | set



3 Functions — Alphabetical List

3-236

cordicabs
CORDIC-based absolute value

Syntax

r = cordicabs(c)

r = cordicabs(c,niters)

r = cordicabs(c,niters,'ScaleOutput',b)

r = cordicabs(c,'ScaleOutput',b)

Description

r = cordicabs(c) returns the magnitude of the complex elements of C.

r = cordicabs(c,niters) performs niters iterations of the algorithm.

r = cordicabs(c,niters,'ScaleOutput',b) specifies both the number of
iterations and, depending on the Boolean value of b, whether to scale the output by the
inverse CORDIC gain value.

r = cordicabs(c,'ScaleOutput',b) scales the output depending on the Boolean
value of b.

Input Arguments

c

c is a vector of complex values.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is
optional. When specified, niters must be a positive, integer-valued scalar. If you do not
specify niters, or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is the word length
of r or one less than the word length of theta, whichever is smaller. For floating-point



 cordicabs

3-237

operation, the maximum value is 52 for double or 23 for single. Increasing the number
of iterations can produce more accurate results but also increases the expense of the
computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('').

'ScaleOutput'

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse
CORDIC gain factor. This argument is optional. If you set ScaleOutput to true or 1, the
output values are multiplied by a constant, which incurs extra computations. If you set
ScaleOutput to false or 0, the output is not scaled.

Default: true

Output Arguments

r

r contains the magnitude values of the complex input values. If the inputs are fixed-point
values, r is also fixed point (and is always signed, with binary point scaling). All input
values must have the same data type. If the inputs are signed, then the word length of r
is the input word length + 2. If the inputs are unsigned, then the word length of r is the
input word length + 3. The fraction length of r is always the same as the fraction length
of the inputs.

Examples

Compare cordicabs and abs of double values.

 dblValues = complex(rand(5,4),rand(5,4));

 r_dbl_ref = abs(dblValues)

 r_dbl_cdc = cordicabs(dblValues)

Compute absolute values of fixed-point inputs.



3 Functions — Alphabetical List

3-238

 fxpValues = fi(dblValues);

 r_fxp_cdc = cordicabs(fxpValues)

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams



 cordicabs

3-239

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and
Z. This algorithm uses the following initial values:



3 Functions — Alphabetical List

3-240

x x

y

0

0

 is initialized to the  input value

 is initialized to  the  input value

 is initialized to 

y

z0 0

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
cordiccart2pol | cordicangle | abs



 cordicangle

3-241

cordicangle

CORDIC-based phase angle

Syntax

theta = cordicangle(c)

theta = cordicangle(c,niters)

Description

theta = cordicangle(c) returns the phase angles, in radians, of matrix c, which
contains complex elements.

theta = cordicangle(c,niters) performs niters iterations of the algorithm.

Input Arguments

c

Matrix of complex numbers

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is
optional. When specified, niters must be a positive, integer-valued scalar. If you do not
specify niters, or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is the word length
of r or one less than the word length of theta, whichever is smaller. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number
of iterations can produce more accurate results but also increases the expense of the
computation and adds latency.



3 Functions — Alphabetical List

3-242

Output Arguments

theta

theta contains the polar coordinates angle values, which are in the range [–pi, pi]
radians. If x and y are floating-point, then theta has the same data type as x and y.
Otherwise, theta is a fixed-point data type with the same word length as x and y and
with a best-precision fraction length for the [-pi, pi] range.

Examples

Phase angle for double-valued input and for fixed-point-valued input.

dblRandomVals = complex(rand(5,4), rand(5,4));

theta_dbl_ref = angle(dblRandomVals);

theta_dbl_cdc = cordicangle(dblRandomVals)

fxpRandomVals = fi(dblRandomVals);

theta_fxp_cdc = cordicangle(fxpRandomVals) 

theta_dbl_cdc =

    1.0422    1.0987    1.2536    0.6122

    0.5893    0.8874    0.3580    0.2020

    0.5840    0.2113    0.8933    0.6355

    0.7212    0.2074    0.9820    0.8110

    1.3640    0.3288    1.4434    1.1291

theta_fxp_cdc =

 

    1.0422    1.0989    1.2534    0.6123

    0.5894    0.8872    0.3579    0.2019

    0.5840    0.2112    0.8931    0.6357

    0.7212    0.2075    0.9819    0.8110

    1.3640    0.3289    1.4434    1.1289

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13



 cordicangle

3-243

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams



3 Functions — Alphabetical List

3-244

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and
Z. This algorithm uses the following initial values:



 cordicangle

3-245

x x

y

0

0

 is initialized to the  input value

 is initialized to  the  input value

 is initialized to 

y

z0 0

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
cordicatan2 | cordiccart2pol | cordicabs | angle



3 Functions — Alphabetical List

3-246

cordicatan2

CORDIC-based four quadrant inverse tangent

Syntax

theta = cordicatan2(y,x)

theta = cordicatan2(y,x,niters)

Description

theta = cordicatan2(y,x) computes the four quadrant arctangent of y and x using a
“CORDIC” on page 3-238 algorithm approximation.

theta = cordicatan2(y,x,niters) performs niters iterations of the algorithm.

Input Arguments

y,x

y,x are Cartesian coordinates. y and x must be the same size. If they are not the same
size, at least one value must be a scalar value. Both y and x must have the same data
type.

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional
argument. When specified, niters must be a positive, integer-valued scalar. If you do not
specify niters or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is one less than the
word length of y or x. For floating-point operation, the maximum value is 52 for double or
23 for single. Increasing the number of iterations can produce more accurate results but
also increases the expense of the computation and adds latency.



 cordicatan2

3-247

Output Arguments

theta

theta is the arctangent value, which is in the range [-pi, pi] radians. If y and x are
floating-point numbers, then theta has the same data type as y and x. Otherwise, theta
is a fixed-point data type with the same word length as y and x and with a best-precision
fraction length for the [-pi, pi] range.

Examples

Floating-point CORDIC arctangent calculation.

theta_cdat2_float = cordicatan2(0.5,-0.5)

theta_cdat2_float =

    2.3562

Fixed- point CORDIC arctangent calculation.

theta_cdat2_fixpt = cordicatan2(fi(0.5,1,16,15),fi(-0.5,1,16,15));

theta_cdat2_fixpt = 

    2.3562

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate



3 Functions — Alphabetical List

3-248

various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams



 cordicatan2

3-249

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and
Z. This algorithm uses the following initial values:



3 Functions — Alphabetical List

3-250

x x

y

0

0

 is initialized to the  input value

 is initialized to  the  input value

 is initialized to 

y

z0 0

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
atan2 | atan2 | cordicsin | cordiccos



 cordiccart2pol

3-251

cordiccart2pol
CORDIC-based approximation of Cartesian-to-polar conversion

Syntax
[theta,r] = cordiccart2pol(x,y)

[theta,r] = cordiccart2pol(x,y, niters)

[theta,r] = cordiccart2pol(x,y, niters,'ScaleOutput',b)

[theta,r] = cordiccart2pol(x,y, 'ScaleOutput',b)

Description
[theta,r] = cordiccart2pol(x,y) using a CORDIC algorithm approximation,
returns the polar coordinates, angle theta and radius r, of the Cartesian coordinates, x
and y.

[theta,r] = cordiccart2pol(x,y, niters) performs niters iterations of the
algorithm.

[theta,r] = cordiccart2pol(x,y, niters,'ScaleOutput',b) specifies both
the number of iterations and, depending on the Boolean value of b, whether to scale the r
output by the inverse CORDIC gain value.

[theta,r] = cordiccart2pol(x,y, 'ScaleOutput',b) scales the r output by the
inverse CORDIC gain value, depending on the Boolean value of b.

Input Arguments
x,y

x,y are Cartesian coordinates. x and y must be the same size. If they are not the same
size, at least one value must be a scalar value. Both x and y must have the same data
type.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is
optional. When specified, niters must be a positive, integer-valued scalar. If you do not



3 Functions — Alphabetical List

3-252

specify niters, or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is the word length
of r or one less than the word length of theta, whichever is smaller. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number
of iterations can produce more accurate results but also increases the expense of the
computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('').

'ScaleOutput'

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse
CORDIC gain factor. This argument is optional. If you set ScaleOutput to true or 1, the
output values are multiplied by a constant, which incurs extra computations. If you set
ScaleOutput to false or 0, the output is not scaled.

Default: true

Output Arguments

theta

theta contains the polar coordinates angle values, which are in the range [–pi, pi]
radians. If x and y are floating-point, then theta has the same data type as x and y.
Otherwise, theta is a fixed-point data type with the same word length as x and y and
with a best-precision fraction length for the [-pi, pi] range.

r

r contains the polar coordinates radius magnitude values. r is real-valued and can be
a scalar value or have the same dimensions as theta If the inputs x,y are fixed-point
values, r is also fixed point (and is always signed, with binary point scaling). Both x,y
input values must have the same data type. If the inputs are signed, then the word
length of r is the input word length + 2. If the inputs are unsigned, then the word length
of r is the input word length + 3. The fraction length of r is always the same as the
fraction length of the x,y inputs.



 cordiccart2pol

3-253

Examples

Convert fixed-point Cartesian coordinates to polar coordinates.

[thPos,r]=cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(0.5,16,15))

thPos =

    0.5881  0.7854  1.1072  1.5708  2.0344  2.3562  2.5535  2.6780

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

r =

    0.9014  0.7071  0.5591  0.5000  0.5591  0.7071  0.9014  1.1180

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 18

        FractionLength: 15

[thNeg,r]=...

  cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(-0.5,16,15))

thNeg =

 -0.5881 -0.7854 -1.1072 -1.5708 -2.0344 -2.3562 -2.5535 -2.6780

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

r =

 0.9014  0.7071  0.5591  0.5000  0.5591  0.7071  0.9014  1.1180

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 18

        FractionLength: 15



3 Functions — Alphabetical List

3-254

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams



 cordiccart2pol

3-255

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and
Z. This algorithm uses the following initial values:



3 Functions — Alphabetical List

3-256

x x

y

0

0

 is initialized to the  input value

 is initialized to  the  input value

 is initialized to 

y

z0 0

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
cordicatan2 | cordicpol2cart | cart2pol



 cordiccexp

3-257

cordiccexp

CORDIC-based approximation of complex exponential

Syntax

y = cordiccexp(theta,niters)

Description

y = cordiccexp(theta,niters) computes cos(theta) + j*sin(theta) using a
“CORDIC” on page 3-238 algorithm approximation. y contains the approximated complex
result.

Input Arguments

theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array
containing the angle values in radians. All values of theta must be real and in the range
[–2π 2π).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional
argument. When specified, niters must be a positive, integer-valued scalar. If you do not
specify niters or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is one less than the
word length of theta. For floating-point operation, the maximum value is 52 for double or
23 for single. Increasing the number of iterations can produce more accurate results, but
it also increases the expense of the computation and adds latency.



3 Functions — Alphabetical List

3-258

Output Arguments

y

y is the approximated complex result of the cordiccexp function. When the input to the
function is floating point, the output data type is the same as the input data type. When
the input is fixed point, the output has the same word length as the input, and a fraction
length equal to the WordLength – 2.

Examples

The following example illustrates the effect of the number of iterations on the result of
the cordiccexp approximation.

wrdLn = 8;

theta = fi(pi/2, 1, wrdLn);

fprintf('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (COS)\t ERROR\t LSBs\n');

fprintf('------\t\t-------\t ------\t ----\t\t-------\t ------\t ----\n');

for niters = 1:(wrdLn - 1)

 cis    = cordiccexp(theta, niters);

 fl     = cis.FractionLength;

 x      = real(cis);

 y      = imag(cis);

 x_dbl  = double(x);

 x_err  = abs(x_dbl - cos(double(theta)));

 y_dbl  = double(y);

 y_err  = abs(y_dbl - sin(double(theta)));

 fprintf('%d\t\t%1.4f\t%1.4f\t%1.1f\t\t%1.4f\t%1.4f\t%1.1f\n',...

   niters,y_dbl,y_err,(y_err*pow2(fl)),x_dbl,x_err,(x_err*pow2(fl)));

end

fprintf('\n');

The output table appears as follows:

NITERS   Y (SIN)  ERROR   LSBs    X (COS)  ERROR   LSBs

------    -------  ------  ----   -------  ------  ----

1         0.7031   0.2968  19.0    0.7031   0.7105  45.5

2         0.9375   0.0625  4.0     0.3125   0.3198  20.5

3         0.9844   0.0156  1.0     0.0938   0.1011  6.5

4         0.9844   0.0156  1.0     -0.0156  0.0083  0.5

5         1.0000   0.0000  0.0     0.0312   0.0386  2.5

6         1.0000   0.0000  0.0     0.0000   0.0073  0.5

7         1.0000   0.0000  0.0     0.0156   0.0230  1.5



 cordiccexp

3-259

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams



3 Functions — Alphabetical List

3-260

CORDIC Rotation Kernel

X represents the real part, Y represents the imaginary part, and Z represents theta. The
accuracy of the CORDIC rotation kernel depends on the choice of initial values for X, Y,
and Z. This algorithm uses the following initial values:



 cordiccexp

3-261

z

x

0

0

 is initialized to the  input argument value

 is initi

q

aalized to 

 is initialized to 

1

00

A

y

N

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
cordiccos | cordicsin | cordicsincos



3 Functions — Alphabetical List

3-262

cordiccos
CORDIC-based approximation of cosine

Syntax
y = cordiccos(theta, niters)

Description
y = cordiccos(theta, niters) computes the cosine of theta using a “CORDIC” on
page 3-238 algorithm approximation.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array
containing the angle values in radians. All values of theta must be real and in the range
[–2π 2π).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional
argument. When specified, niters must be a positive, integer-valued scalar. If you do not
specify niters or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is one less than the
word length of theta. For floating-point operation, the maximum value is 52 for double or
23 for single. Increasing the number of iterations can produce more accurate results, but
it also increases the expense of the computation and adds latency.

Output Arguments
y

y is the CORDIC-based approximation of the cosine of theta. When the input to the
function is floating point, the output data type is the same as the input data type. When



 cordiccos

3-263

the input is fixed point, the output has the same word length as the input, and a fraction
length equal to the WordLength – 2.

Examples

Compare Results of cordiccos and cos Functions

Compare the results produced by various iterations of the cordiccos algorithm to the
results of the double-precision cos function.

% Create 1024 points between [0, 2*pi)

stepSize = pi/512;

thRadDbl = 0:stepSize:(2*pi - stepSize);

thRadFxp = sfi(thRadDbl, 12);    % signed, 12-bit fixed-point

cosThRef = cos(double(thRadFxp));   % reference results

% Use 12-bit quantized inputs and vary the number

% of iterations from 2 to 10.

% Compare the  fixed-point CORDIC results to the

% double-precision trig function results.

for niters = 2:2:10

    cdcCosTh  = cordiccos(thRadFxp,  niters);

    errCdcRef = cosThRef - double(cdcCosTh);

end

figure

hold on

axis([0 2*pi -1.25 1.25]);

    plot(thRadFxp, cosThRef,  'b');

    plot(thRadFxp, cdcCosTh,  'g');

    plot(thRadFxp, errCdcRef, 'r');

    ylabel('cos(\Theta)');

    gca.XTick = 0:pi/2:2*pi;

    gca.XTickLabel = {'0','pi/2','pi','3*pi/2','2*pi'};

    gca.YTick = -1:0.5:1;

    gca.YTickLabel = {'-1.0','-0.5','0','0.5','1.0'};

    ref_str = 'Reference: cos(double(\Theta))';

    cdc_str = sprintf('12-bit CORDIC cosine; N = %d', niters);

    err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));

    legend(ref_str, cdc_str, err_str);



3 Functions — Alphabetical List

3-264

After 10 iterations, the CORDIC algorithm has approximated the cosine of theta to
within 0.005187 of the double-precision cosine result.

• Demo: Fixed-Point Sine and Cosine Calculation
• Demo: Fixed-Point Arctangent Calculation

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available



 cordiccos

3-265

because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams



3 Functions — Alphabetical List

3-266

CORDIC Rotation Kernel

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of
the CORDIC rotation kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:



 cordiccos

3-267

z

x

0

0

 is initialized to the  input argument value

 is initi

q

aalized to 

 is initialized to 

1

00

A

y

N

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
cordiccexp | cordicsin | cordicsincos | sin | cos



3 Functions — Alphabetical List

3-268

cordicpol2cart
CORDIC-based approximation of polar-to-Cartesian conversion

Syntax

[x,y] = cordicpol2cart(theta,r)

[x,y] = cordicpol2cart(theta,r,niters)

[x,y] = cordicpol2cart(theta,r,Name,Value)

[x,y] = cordicpol2cart(theta,r,niters,Name,Value)

Description

[x,y] = cordicpol2cart(theta,r) returns the Cartesian xy coordinates of r*
e^(j*theta) using a CORDIC algorithm approximation.

[x,y] = cordicpol2cart(theta,r,niters) performs niters iterations of the
algorithm.

[x,y] = cordicpol2cart(theta,r,Name,Value) scales the output depending on
the Boolean value of b.

[x,y] = cordicpol2cart(theta,r,niters,Name,Value) specifies both the
number of iterations and Name,Value pair for whether to scale the output.

Input Arguments

theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array
containing the angle values in radians. All values of theta must be in the range [–2π 2π).

r

r contains the input magnitude values and can be a scalar or have the same dimensions
as theta. r must be real valued.



 cordicpol2cart

3-269

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is
optional. When specified, niters must be a positive, integer-valued scalar. If you do not
specify niters, or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is the word length
of r or one less than the word length of theta, whichever is smaller. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number
of iterations can produce more accurate results but also increases the expense of the
computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('').

'ScaleOutput'

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse
CORDIC gain factor. This argument is optional. If you set ScaleOutput to true or 1, the
output values are multiplied by a constant, which incurs extra computations. If you set
ScaleOutput to false or 0, the output is not scaled.

Default: true

Output Arguments

[x,y]

[x,y] contains the approximated Cartesian coordinates. When the input r is floating point,
the output [x,y] has the same data type as the input.

When the input r is a signed integer or fixed point data type, the outputs [x,y] are signed
fi objects. These fi objects have word lengths that are two bits larger than that of r.
Their fraction lengths are the same as the fraction length of r.

When the input r is an unsigned integer or fixed point, the outputs [x,y] are signed fi
objects. These fi objects have word lengths are three bits larger than that of r. Their
fraction lengths are the same as the fraction length of r.



3 Functions — Alphabetical List

3-270

Examples

Run the following code, and evaluate the accuracy of the CORDIC-based Polar-to-
Cartesian conversion.

wrdLn = 16;

theta = fi(pi/3, 1, wrdLn);

u     = fi( 2.0, 1, wrdLn);

fprintf('\n\nNITERS\tX\t\t ERROR\t LSBs\t\tY\t\t ERROR\t LSBs\n');

fprintf('------\t-------\t ------\t ----\t\t-------\t ------\t ----\n');

for niters = 1:(wrdLn - 1)

 [x_ref, y_ref] = pol2cart(double(theta),double(u));

 [x_fi,  y_fi] = cordicpol2cart(theta, u, niters);

 x_dbl  = double(x_fi);

 y_dbl  = double(y_fi);

 x_err  = abs(x_dbl - x_ref);

 y_err  = abs(y_dbl - y_ref);

 fprintf('%d\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n',...

   niters,x_dbl,x_err,(x_err * pow2(x_fi.FractionLength)),...

   y_dbl,y_err,(y_err * pow2(y_fi.FractionLength)));

end

fprintf('\n');

NITERS  X        ERROR    LSBs      Y      ERROR   LSBs

------ -------  ------  ----  -------  ------  ----

   1    1.4142   0.4142   3392.8  1.4142   0.3178   2603.8

   2    0.6324   0.3676   3011.2  1.8973   0.1653   1354.2

   3    1.0737   0.0737   603.8   1.6873   0.0448   366.8

   4    0.8561   0.1440   1179.2  1.8074   0.0753   617.2

   5    0.9672   0.0329   269.2   1.7505   0.0185   151.2

   6    1.0214   0.0213   174.8   1.7195   0.0126   102.8

   7    0.9944   0.0056   46.2    1.7351   0.0031   25.2

   8    1.0079   0.0079   64.8    1.7274   0.0046   37.8

   9    1.0011   0.0011   8.8     1.7313   0.0007   5.8

   10   0.9978   0.0022   18.2    1.7333   0.0012   10.2

   11   0.9994   0.0006   5.2     1.7323   0.0003   2.2

   12   1.0002   0.0002   1.8     1.7318   0.0002   1.8

   13   0.9999   0.0002   1.2     1.7321   0.0000   0.2

   14   0.9996   0.0004   3.2     1.7321   0.0000   0.2

   15   0.9998   0.0003   2.2     1.7321   0.0000   0.2



 cordicpol2cart

3-271

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams



3 Functions — Alphabetical List

3-272

CORDIC Rotation Kernel

X represents the real part, Y represents the imaginary part, and Z represents theta. This
algorithm takes its initial values for X, Y, and Z from the inputs, r and theta.



 cordicpol2cart

3-273

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
cordicrotate | cordicsincos | pol2cart



3 Functions — Alphabetical List

3-274

cordicrotate

Rotate input using CORDIC-based approximation

Syntax

v = cordicrotate(theta,u)

v = cordicrotate(theta,u,niters)

v = cordicrotate(theta,u,Name,Value)

v = cordicrotate(theta,u,niters,Name,Value)

Description

v = cordicrotate(theta,u) rotates the input u by theta using a CORDIC algorithm
approximation. The function returns the result of u .* e^(j*theta).

v = cordicrotate(theta,u,niters) performs niters iterations of the algorithm.

v = cordicrotate(theta,u,Name,Value) scales the output depending on the
Boolean value, b.

v = cordicrotate(theta,u,niters,Name,Value) specifies both the number of
iterations and the Name,Value pair for whether to scale the output.

Input Arguments

theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array
containing the angle values in radians. All values of theta must be in the range [–2π 2π).

u

u can be a signed or unsigned scalar value or have the same dimensions as theta. u can
be real or complex valued.



 cordicrotate

3-275

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is
optional. When specified, niters must be a positive, integer-valued scalar. If you do not
specify niters, or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is the word length
of u or one less than the word length of theta, whichever is smaller. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number
of iterations can produce more accurate results, but it also increases the expense of the
computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('').

'ScaleOutput'

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse
CORDIC gain factor. This argument is optional. If you set ScaleOutput to true or 1, the
output values are multiplied by a constant, which incurs extra computations. If you set
ScaleOutput to false or 0, the output is not scaled.

Default: true

Output Arguments

v

v contains the approximated result of the CORDIC rotation algorithm. When the input u
is floating point, the output v has the same data type as the input.

When the input u is a signed integer or fixed point data type, the output v is a signed fi
object. This fi object has a word length that is two bits larger than that of u. Its fraction
length is the same as the fraction length of u.

When the input u is an unsigned integer or fixed point, the output v is a signed fi object.
This fi object has a word length that is three bits larger than that of u. Its fraction
length is the same as the fraction length of u.



3 Functions — Alphabetical List

3-276

Examples

Run the following code, and evaluate the accuracy of the CORDIC-based complex
rotation.

wrdLn = 16;

theta = fi(-pi/3, 1, wrdLn);

u     = fi(0.25 - 7.1i, 1, wrdLn);

uTeTh = double(u) .* exp(1i * double(theta));

fprintf('\n\nNITERS\tReal\t ERROR\t LSBs\t\tImag\tERROR\tLSBs\n');

fprintf('------\t-------\t ------\t ----\t\t-------\t------\t----\n');

for niters = 1:(wrdLn - 1)

 v_fi   = cordicrotate(theta, u, niters);

 v_dbl  = double(v_fi);

 x_err  = abs(real(v_dbl) - real(uTeTh));

  y_err  = abs(imag(v_dbl) - imag(uTeTh));

 fprintf('%d\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n',...

   niters, real(v_dbl),x_err,(x_err * pow2(v_fi.FractionLength)), ...

   imag(v_dbl),y_err, (y_err * pow2(v_fi.FractionLength)));

end

fprintf('\n');

The output table appears as follows:

NITERS  Real     ERROR    LSBs    Imag     ERROR    LSBs

------ -------  ------  ----  -------  ------  ------

1      -4.8438   1.1800   4833.5  -5.1973  1.4306  5859.8

2      -6.6567   0.6329   2592.5  -2.4824  1.2842  5260.2

3      -5.8560   0.1678   687.5   -4.0227  0.2560  1048.8

4      -6.3098   0.2860   1171.5  -3.2649  0.5018  2055.2

5      -6.0935   0.0697   285.5   -3.6528  0.1138  466.2

6      -5.9766   0.0472   193.5   -3.8413  0.0746  305.8

7      -6.0359   0.0121   49.5    -3.7476  0.0191  78.2

8      -6.0061   0.0177   72.5    -3.7947  0.0280  114.8

9      -6.0210   0.0028   11.5    -3.7710  0.0043  17.8

10     -6.0286   0.0048   19.5    -3.7590  0.0076  31.2

11     -6.0247   0.0009   3.5     -3.7651  0.0015  6.2

12     -6.0227   0.0011   4.5     -3.7683  0.0017  6.8

13     -6.0237   0.0001   0.5     -3.7666  0.0001  0.2

14     -6.0242   0.0004   1.5     -3.7656  0.0010  4.2

15     -6.0239   0.0001   0.5     -3.7661  0.0005  2.2



 cordicrotate

3-277

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams



3 Functions — Alphabetical List

3-278

CORDIC Rotation Kernel

X represents the real part, Y represents the imaginary part, and Z represents theta. This
algorithm takes its initial values for X, Y, and Z from the inputs, u and theta.



 cordicrotate

3-279

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
cordicpol2cart | cordiccexp



3 Functions — Alphabetical List

3-280

cordicsin
CORDIC-based approximation of sine

Syntax
y = cordicsin(theta,niters)

Description
y = cordicsin(theta,niters) computes the sine of theta using a “CORDIC” on page
3-238 algorithm approximation.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array
containing the angle values in radians. All values of theta must be real and in the range
[–2π 2π).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional
argument. When specified, niters must be a positive, integer-valued scalar. If you do not
specify niters or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is one less than the
word length of theta. For floating-point operation, the maximum value is 52 for double or
23 for single. Increasing the number of iterations can produce more accurate results, but
it also increases the expense of the computation and adds latency.

Output Arguments
y

y is the CORDIC-based approximation of the sine of theta. When the input to the
function is floating point, the output data type is the same as the input data type. When



 cordicsin

3-281

the input is fixed point, the output has the same word length as the input, and a fraction
length equal to the WordLength – 2.

Examples

Compare Results of cordicsin and sin Functions

Compare the results produced by various iterations of the cordicsin algorithm to the
results of the double-precision sin function.

% Create 1024 points between [0, 2*pi)

stepSize = pi/512;

thRadDbl = 0:stepSize:(2*pi - stepSize);

thRadFxp = sfi(thRadDbl, 12);  % signed, 12-bit fixed point

sinThRef = sin(double(thRadFxp)); % reference results

% Use 12-bit quantized inputs and vary the number of iterations

% from 2 to 10.

% Compare the fixed-point cordicsin function results to the

% results of the double-precision sin function.

for niters = 2:2:10

    cdcSinTh  = cordicsin(thRadFxp,  niters);

    errCdcRef = sinThRef - double(cdcSinTh);

end

figure

hold on

axis([0 2*pi -1.25 1.25])

plot(thRadFxp, sinThRef,  'b');

plot(thRadFxp, cdcSinTh,  'g');

plot(thRadFxp, errCdcRef, 'r');

ylabel('sin(\Theta)');

gca.XTick = 0:pi/2:2*pi;

gca.XTickLabel = {'0','pi/2','pi','3*pi/2','2*pi'};

gca.YTick = -1:0.5:1;

gca.YTickLabel = {'-1.0','-0.5','0','0.5','1.0'};

ref_str = 'Reference: sin(double(\Theta))';

cdc_str = sprintf('12-bit CORDIC sine; N = %d', niters);

err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));

legend(ref_str, cdc_str, err_str);



3 Functions — Alphabetical List

3-282

After 10 iterations, the CORDIC algorithm has approximated the sine of theta to within
0.005492 of the double-precision sine result.

• Demo: Fixed-Point Sine and Cosine Calculation
• Demo: Fixed-Point Arctangent Calculation

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available



 cordicsin

3-283

because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams



3 Functions — Alphabetical List

3-284

CORDIC Rotation Kernel

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of
the CORDIC rotation kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:



 cordicsin

3-285

z

x

0

0

 is initialized to the  input argument value

 is initi

q

aalized to 

 is initialized to 

1

00

A

y

N

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
cordiccexp | cordiccos | cordicsincos | sin | cos



3 Functions — Alphabetical List

3-286

cordicsincos

CORDIC-based approximation of sine and cosine

Syntax

[y, x] = cordicsincos(theta,niters)

Description

[y, x] = cordicsincos(theta,niters) computes the sine and cosine of theta
using a “CORDIC” on page 3-238 algorithm approximation. y contains the approximated
sine result, and x contains the approximated cosine result.

Input Arguments

theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array
containing the angle values in radians. All values of theta must be real and in the range
[–2π 2π). When theta has a fixed-point data type, it must be signed.

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional
argument. When specified, niters must be a positive, integer-valued scalar. If you do not
specify niters or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is one less than the
word length of theta. For floating-point operation, the maximum value is 52 for double or
23 for single. Increasing the number of iterations can produce more accurate results, but
it also increases the expense of the computation and adds latency.



 cordicsincos

3-287

Output Arguments

y

CORDIC-based approximated sine of theta. When the input to the function is floating
point, the output data type is the same as the input data type. When the input is fixed
point, the output has the same word length as the input, and a fraction length equal to
the WordLength – 2.

x

CORDIC-based approximated cosine of theta. When the input to the function is floating
point, the output data type is the same as the input data type. When the input is fixed
point, the output has the same word length as the input, and a fraction length equal to
the WordLength – 2.

Examples

The following example illustrates the effect of the number of iterations on the result of
the cordicsincos approximation.

wrdLn = 8;

theta = fi(pi/2, 1, wrdLn);

fprintf('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (COS)\t ERROR\t LSBs\n');

fprintf('------\t\t-------\t ------\t ----\t\t-------\t ------\t ----\n');

for niters = 1:(wrdLn - 1)

  [y, x] = cordicsincos(theta, niters);

  y_FL   = y.FractionLength;

  y_dbl  = double(y);

  x_dbl  = double(x);

  y_err  = abs(y_dbl - sin(double(theta)));

  x_err  = abs(x_dbl - cos(double(theta)));

  fprintf(' %d\t\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n', ...

   niters, y_dbl,y_err, (y_err * pow2(y_FL)), x_dbl,x_err, ...

   (x_err * pow2(y_FL)));

end

fprintf('\n');

The output table appears as follows:

NITERS    Y (SIN)  ERROR   LSBs   X (COS)  ERROR   LSBs



3 Functions — Alphabetical List

3-288

------    -------  ------  ----   -------  ------  ----

1         0.7031   0.2968  19.0   0.7031   0.7105  45.5

2         0.9375   0.0625  4.0    0.3125   0.3198  20.5

3         0.9844   0.0156  1.0    0.0938   0.1011  6.5

4         0.9844   0.0156  1.0   -0.0156   0.0083  0.5

5         1.0000   0.0000  0.0    0.0312   0.0386  2.5

6         1.0000   0.0000  0.0    0.0000   0.0073  0.5

7         1.0000   0.0000  0.0    0.0156   0.0230  1.5

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.



 cordicsincos

3-289

Algorithms

Signal Flow Diagrams



3 Functions — Alphabetical List

3-290

CORDIC Rotation Kernel

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of
the CORDIC rotation kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:



 cordicsincos

3-291

z

x

0

0

 is initialized to the  input argument value

 is initi

q

aalized to 

 is initialized to 

1

00

A

y

N

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
cordiccexp | cordiccos | cordicsin



3 Functions — Alphabetical List

3-292

cordicsqrt
CORDIC-based approximation of square root

Syntax

y=cordicsqrt(u)

y=cordicsqrt(u, niters)

y=cordicsqrt( ___ , 'ScaleOutput', B)

Description

y=cordicsqrt(u) computes the square root of u using a CORDIC algorithm
implementation.

y=cordicsqrt(u, niters) computes the square root of u by performing niters
iterations of the CORDIC algorithm.

y=cordicsqrt( ___ , 'ScaleOutput', B) scales the output depending on the
Boolean value of B.

Examples

Calculate the CORDIC Square Root

Find the square root of fi object x using a CORDIC implementation.

x = fi(1.6,1,12);

y = cordicsqrt(x)

y = 

    1.2646

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 12

        FractionLength: 10



 cordicsqrt

3-293

Because you did not specify niters, the function performs the maximum number of
iterations, x.WordLength - 1.

Compute the difference between the results of the cordicsqrt function and the double-
precision sqrt function.

err = abs(sqrt(double(x))-double(y))

err =

   1.0821e-04

Calculate the CORDIC Square Root With a Specified Number of Iterations

Compute the square root of x with three iterations of the CORDIC kernel.

x = fi(1.6,1,12);

y = cordicsqrt(x,3)

y = 

    1.2646

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 12

        FractionLength: 10

Compute the difference between the results of the cordicsqrt function and the double-
precision sqrt function.

err = abs(sqrt(double(x))-double(y))

err =

   1.0821e-04

Calculate the CORDIC Square Root Without Scaling the Output

x = fi(1.6,1,12);

y = cordicsqrt(x, 'ScaleOutput', 0)



3 Functions — Alphabetical List

3-294

y = 

    1.0479

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 12

        FractionLength: 10

The output, y, was not scaled by the inverse CORDIC gain factor.

Compare Results of cordicsqrt and sqrt Functions

Compare the results produced by 10 iterations of the cordicsqrt algorithm to the
results of the double-precision sqrt function.

% Create 500 points between [0, 2)

stepSize = 2/500;

XDbl = 0:stepSize:2;

XFxp = fi(XDbl, 1, 12);    % signed, 12-bit fixed-point

sqrtXRef = sqrt(double(XFxp));   % reference results

% Use 12-bit quantized inputs and set the number

% of iterations to 10.

% Compare the  fixed-point CORDIC results to the

% double-precision sqrt function results.

niters = 10;

cdcSqrtX  = cordicsqrt(XFxp,  niters);

errCdcRef = sqrtXRef - double(cdcSqrtX);

figure

hold on

axis([0 2 -.5 1.5])

plot(XFxp, sqrtXRef,  'b')

plot(XFxp, cdcSqrtX,  'g')

plot(XFxp, errCdcRef, 'r')

ylabel('Sqrt(x)')

gca.XTick = 0:0.25:2;

gca.XTickLabel = {'0','0.25','0.5','0.75','1','1.25','1.5','1.75','2'};

gca.YTick = -.5:.25:1.5;

gca.YTickLabel = {'-0.5','-0.25','0','0.25','0.5','0.75','1','1.25','1.5'};

ref_str = 'Reference: sqrt(double(X))';

cdc_str = sprintf('12-bit CORDIC square root; N = %d', niters);

err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));



 cordicsqrt

3-295

legend(ref_str, cdc_str, err_str, 'Location', 'southeast')

• “Compute Square Root Using CORDIC”

Input Arguments

u — Data input array
scalar | vector | matrix | multidimensional array

Data input array, specified as a positive scalar, vector, matrix, or multidimensional
array of fixed-point or built-in data types. When the input array contains values between
0.5 and 2, the algorithm is most accurate. A pre- and post-normalization process is



3 Functions — Alphabetical List

3-296

performed on input values outside of this range. For more information on this process,
see “Pre- and Post-Normalization” on page 3-298.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive,
integer-valued scalar. If you do not specify niters, the algorithm uses a default
value. For fixed-point inputs, the default value of niters is u.WordLength - 1. For
floating-point inputs, the default value of niters is 52 for double precision; 23 for single
precision.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: y= cordicsqrt(x,’ScaleOutput’, 0)

'ScaleOutput' — Whether to scale the output
true (default) | false

Boolean value that specifies whether to scale the output by the inverse CORDIC gain
factor. If you set ScaleOutput to true or 1, the output values are multiplied by a
constant, which incurs extra computations. If you set ScaleOutput to false or 0, the
output is not scaled.

Data Types: logical

Output Arguments

y — Output array
scalar | vector | matrix | multidimensional array



 cordicsqrt

3-297

Output array, returned as a scalar, vector, matrix, or multidimensional array.

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams

For further details on the pre- and post-normalization process, see “Pre- and Post-
Normalization” on page 3-298.



3 Functions — Alphabetical List

3-298

CORDIC Hyperbolic Kernel

X is initialized to u'+.25, and Y is initialized to u'-.25, where u' is the normalized
function input.

With repeated iterations of the CORDIC hyperbolic kernel, X approaches A u
N

’, where
AN represents the CORDIC gain. Y approaches 0.

Pre- and Post-Normalization

For input values outside of the range of [0.5, 2) a pre- and post-normalization process
occurs. This process performs bitshifts on the input array before passing it to the



 cordicsqrt

3-299

CORDIC kernel. The result is then shifted back into the correct output range during the
post-normalization stage. For more details on this process see “Overcoming Algorithm
Input Range Limitations” in “Compute Square Root Using CORDIC”.

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap

• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also
sqrt



3 Functions — Alphabetical List

3-300

cos
Cosine of fi object

Syntax
y = cos(theta)

Description
y = cos(theta) returns the cosine of fi input theta using a table-lookup algorithm.

Input Arguments
theta

theta can be a real-valued, signed or unsigned scalar, vector, matrix, or N-dimensional
array containing the fixed-point angle values in radians. Valid data types of theta are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Output Arguments
y

y is the cosine of theta. y is a signed, fixed-point number in the range [-1,1]. It has a
16-bit word length and 15-bit fraction length (numerictype(1,16,15)). This cosine
calculation is accurate only to within the top 16 most-significant bits of the input.

Examples
Calculate the cosine of fixed-point input values.



 cos

3-301

theta = fi([0,pi/4,pi/3,pi/2,(2*pi)/3,(3*pi)/4,pi])

theta =

 

        0  0.7854  1.0472  1.5708  2.0944  2.3562  3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

y = cos(theta)

y =

 

    1.0000  0.7072  0.4999  0.0001 -0.4999  -0.7070  -1.0000

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

More About

Cosine

The cosine of angle Θ is defined as

cos( )q

q q

=
+

-
e e

i i

2

Algorithms

The cos function computes the cosine of fixed-point input using an 8-bit lookup table as
follows:

1 Cast the input to a 16-bit stored integer value, using the 16 most-significant bits.
2 Perform a modulo 2π, so the input is in the range [0,2π) radians.
3 Compute the table index, based on the 16-bit stored integer value, normalized to the

full uint16 range.



3 Functions — Alphabetical List

3-302

4 Use the 8 most-significant bits to obtain the first value from the table.
5 Use the next-greater table value as the second value.
6 Use the 8 least-significant bits to interpolate between the first and second values,

using nearest-neighbor linear interpolation.

fimath Propagation Rules

The cos function ignores and discards any fimath attached to the input, theta. The
output, y, is always associated with the default fimath.

See Also
angle | atan2 | cordiccos | cordicsin | cos | sin



 ctranspose

3-303

ctranspose
Complex conjugate transpose of fi object

Syntax

ctranspose(a)

Description

This function accepts fi objects as inputs.

ctranspose(a) returns the complex conjugate transpose of fi object a. It is also called
for the syntax a'.

See Also
transpose



3 Functions — Alphabetical List

3-304

dec
Unsigned decimal representation of stored integer of fi object

Syntax

dec(a)

Description

dec(a) returns the stored integer of fi object a in unsigned decimal format as a string.
dec(a) is equivalent to a.dec.

.

Fixed-point numbers can be represented as

real world value stored integerfraction length
- = ¥

-
2

or, equivalently as

real world value slope stored integer bias- = ¥ +( )

The stored integer is the raw binary number, in which the binary point is assumed to be
at the far right of the word.

Examples

The code

a = fi([-1 1],1,8,7);

y = dec(a)

z = a.dec

returns



 dec

3-305

y =

  128   127

z =

  128   127

See Also
bin | hex | storedInteger | oct | sdec



3 Functions — Alphabetical List

3-306

denormalmax
Largest denormalized quantized number for quantizer object

Syntax

x = denormalmax(q)

Description

x = denormalmax(q) is the largest positive denormalized quantized number where q
is a quantizer object. Anything larger than x is a normalized number. Denormalized
numbers apply only to floating-point format. When q represents fixed-point numbers,
this function returns eps(q).

Examples
q = quantizer('float',[6 3]);

x = denormalmax(q)

x =

    0.1875

More About

Algorithms

When q is a floating-point quantizer object,

denormalmax(q) = realmin(q) - denormalmin(q)

When q is a fixed-point quantizer object,

denormalmax(q) = eps(q)



 denormalmax

3-307

See Also
denormalmin | eps | quantizer



3 Functions — Alphabetical List

3-308

denormalmin
Smallest denormalized quantized number for quantizer object

Syntax

x = denormalmin(q)

Description

x = denormalmin(q) is the smallest positive denormalized quantized number where
q is a quantizer object. Anything smaller than x underflows to zero with respect to the
quantizer object q. Denormalized numbers apply only to floating-point format. When q
represents a fixed-point number, denormalmin returns eps(q).

Examples
q = quantizer('float',[6 3]);

x = denormalmin(q)

x =

    0.0625

More About

Algorithms

When q is a floating-point quantizer object,

x E fmin
=

-

2

where Emin is equal to exponentmin(q).

When q is a fixed-point quantizer object,



 denormalmin

3-309

x q f
= =

-eps( ) 2

where f is equal to fractionlength(q).

See Also
denormalmax | eps | quantizer



3 Functions — Alphabetical List

3-310

diag
Diagonal matrices or diagonals of matrix

Description

This function accepts fi objects as inputs.

Refer to the MATLAB diag reference page for more information.



 disp

3-311

disp
Display object

Description

This function accepts fi objects as inputs.

Refer to the MATLAB disp reference page for more information.



3 Functions — Alphabetical List

3-312

divide
Divide two objects

Syntax

c = divide(T,a,b)

Description

c = divide(T,a,b) performs division on the elements of a by the elements of b. The
result c has the numerictype object T.

If a and b are both fi objects, c has the same fimath object as a. If c has a fi Fixed
data type, and any one of the inputs have fi floating point data types, then the fi
floating point is converted into a fixed-point value. Intermediate quantities are calculated
using the fimath object of a. See “Data Type Propagation Rules” on page 3-312.

a and b must have the same dimensions unless one is a scalar. If either a or b is scalar,
then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numeric type, then
the built-in object is cast to the word length of the fi object, preserving best-precision
fraction length. Intermediate quantities are calculated using the fimath object of the
input fi object. See “Data Type Propagation Rules” on page 3-312.

If a and b are both MATLAB built-in doubles, then c is the floating-point quotient a./b,
and numerictype T is ignored.

Note: The divide function is not currently supported for [Slope Bias] signals.

Data Type Propagation Rules

For syntaxes for which Fixed-Point Designer software uses the numerictype object T,
the divide function follows the data type propagation rules listed in the following table.



 divide

3-313

In general, these rules can be summarized as “floating-point data types are propagated.”
This allows you to write code that can be used with both fixed-point and floating-point
inputs.

Data Type of Input fi Objects a and b Data Type of
numerictype object T

Data Type of Output c

Built-in double Built-in double Any Built-in double
fi Fixed fi Fixed fi Fixed Data type of

numerictype object
T

fi Fixed fi Fixed fi double fi double
fi Fixed fi Fixed fi single fi single
fi Fixed fi Fixed fi ScaledDouble fi ScaledDouble

with properties of
numerictype object
T

fi double fi double fi Fixed fi double
fi double fi double fi double fi double
fi double fi double fi single fi single
fi double fi double fi ScaledDouble fi double
fi single fi single fi Fixed fi single
fi single fi single fi double fi double
fi single fi single fi single fi single
fi single fi single fi ScaledDouble fi single
fi ScaledDouble fi ScaledDouble fi Fixed If either input a

or b is of type fi
ScaledDouble,
then output c
will be of type fi
ScaledDouble

with properties of
numerictype object
T

fi ScaledDouble fi ScaledDouble fi double fi double



3 Functions — Alphabetical List

3-314

Data Type of Input fi Objects a and b Data Type of
numerictype object T

Data Type of Output c

fi ScaledDouble fi ScaledDouble fi single fi single
fi ScaledDouble fi ScaledDouble fi ScaledDouble If either input a

or b is of type fi
ScaledDouble,
then output c
will be of type fi
ScaledDouble

with properties of
numerictype object
T

Examples

This example highlights the precision of the fi divide function.

First, create an unsigned fi object with an 80-bit word length and 2^-83 scaling, which
puts the leading 1 of the representation into the most significant bit. Initialize the object
with double-precision floating-point value 0.1, and examine the binary representation:

P = ...

fipref('NumberDisplay','bin',...

       'NumericTypeDisplay','short',...

       'FimathDisplay','none');

a = fi(0.1, false, 80, 83) 

a =

 

11001100110011001100110011001100110011001100110011010000

000000000000000000000000

      u80,83

Notice that the infinite repeating representation is truncated after 52 bits, because the
mantissa of an IEEE standard double-precision floating-point number has 52 bits.

Contrast the above to calculating 1/10 in fixed-point arithmetic with the quotient set to
the same numeric type as before:

T = numerictype('Signed',false,'WordLength',80,...



 divide

3-315

           'FractionLength',83);

a = fi(1);

b = fi(10);

c = divide(T,a,b);

c.bin

ans =

11001100110011001100110011001100110011001100110011001100

110011001100110011001100

Notice that when you use the divide function, the quotient is calculated to the full 80
bits, regardless of the precision of a and b. Thus, the fi object c represents 1/10 more
precisely than IEEE standard double-precision floating-point number can.

With 1000 bits of precision,

T = numerictype('Signed',false,'WordLength',1000,...

           'FractionLength',1003);

a = fi(1);

b = fi(10);

c = divide(T,a,b);



3 Functions — Alphabetical List

3-316

c.bin

ans =

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011001100

110011001100110011001100110011001100110011001100

See Also
add | fi | fimath | mpy | mrdivide | numerictype | rdivide | sub | sum



 double

3-317

double
Double-precision floating-point real-world value of fi object

Syntax

double(a)

Description

double(a) returns the real-world value of a fi object in double-precision floating point.
double(a) is equivalent to a.double.

Fixed-point numbers can be represented as

real world value stored integerfraction length
- = ¥

-
2

or, equivalently as

real world value slope stored integer bias- = ¥ +( )

Examples

The code

a = fi([-1 1],1,8,7);

y = double(a)

z = a.double

returns

y =

           -1      0.9922

z =



3 Functions — Alphabetical List

3-318

           -1      0.9922

See Also
single



 embedded.fi class

3-319

embedded.fi class

Fixed-point numeric object

Description

Use the fi function to create an embedded.fi object.

See Also
embedded.fimath | embedded.numerictype | fi

More About
• Class Attributes
• Property Attributes



3 Functions — Alphabetical List

3-320

embedded.fimath class

fimath object

Description

Use the fimath function to create an embedded.fimath object.

See Also
embedded.fi | embedded.numerictype | fimath

More About
• Class Attributes
• Property Attributes



 embedded.numerictype class

3-321

embedded.numerictype class

numerictype object

Description

Use the numerictype function to create an embedded.numerictype object.

See Also
embedded.fi | embedded.fimath | numerictype

More About
• Class Attributes
• Property Attributes



3 Functions — Alphabetical List

3-322

end
Last index of array

Description

This function accepts fi objects as inputs.

Refer to the MATLAB end reference page for more information.



 eps

3-323

eps
Quantized relative accuracy for fi or quantizer objects

Syntax

eps(obj)

Description

eps(obj) returns the value of the least significant bit of the value of the fi object or
quantizer object obj. The result of this function is equivalent to that given by the
Fixed-Point Designer function lsb.

See Also
intmax | intmin | lowerbound | lsb | range | realmax | realmin | upperbound



3 Functions — Alphabetical List

3-324

eq
Determine whether real-world values of two fi objects are equal

Syntax

c = eq(a,b)

a == b

Description

c = eq(a,b) is called for the syntax a == b when a or b is a fi object. a and b must
have the same dimensions unless one is a scalar. A scalar can be compared with another
object of any size.

a == b does an element-by-element comparison between a and b and returns a matrix of
the same size with elements set to 1 where the relation is true, and 0 where the relation
is false.

See Also
ge | gt | isequal | le | lt | ne



 errmean

3-325

errmean
Mean of quantization error

Syntax

m = errmean(q)

Description

m = errmean(q) returns the mean of a uniformly distributed random quantization
error that arises from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the
quantizer.

Examples

Find m, the mean of the quantization error for quantizer q:

q = quantizer;

m = errmean(q)

m =

   -1.525878906250000e-005

Now compare m to m_est, the sample mean from a Monte Carlo experiment:

r = realmax(q);

u = 2*r*rand(1000,1)-r;  % Original signal

y = quantize(q,u);       % Quantized signal

e = y - u;               % Error

m_est = mean(e)          % Estimate of the error mean

m_est =



3 Functions — Alphabetical List

3-326

   -1.519507450175317e-005

See Also
errpdf | errvar | quantize



 errorbar

3-327

errorbar
Plot error bars along curve

Description

This function accepts fi objects as inputs.

Refer to the MATLAB errorbar reference page for more information.



3 Functions — Alphabetical List

3-328

errpdf

Probability density function of quantization error

Syntax

[f,x] = errpdf(q)

f = errpdf(q,x)

Description

[f,x] = errpdf(q) returns the probability density function f evaluated at the values
in x. The vector x contains the uniformly distributed random quantization errors that
arise from quantizing a signal by quantizer object q.

f = errpdf(q,x) returns the probability density function f evaluated at the values in
vector x.

Note The results are not exact when the signal precision is close to the precision of the
quantizer.

Examples

Compute the PDF of the quantization error

q = quantizer('nearest',[4 3]);

[f,x] = errpdf(q);

subplot(211)

plot(x,f)

title('Computed PDF of the quantization error.')



 errpdf

3-329

The output plot shows the probability density function of the quantization error.
Compare this result to a plot of the sample probability density function from a Monte
Carlo experiment:

 r = realmax(q);

      u = 2*r*rand(10000,1)-r;  % Original signal

      y = quantize(q,u);        % Quantized signal

      e = y - u;                % Error

      subplot(212)

      hist(e,20)

      gca.xlim = [min(x) max(x)];

      title('Estimate of the PDF of the quantization error.')



3 Functions — Alphabetical List

3-330

See Also
errmean | errvar | quantize



 errvar

3-331

errvar
Variance of quantization error

Syntax

v = errvar(q)

Description

v = errvar(q) returns the variance of a uniformly distributed random quantization
error that arises from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the
quantizer.

Examples

Find v, the variance of the quantization error for quantizer object q:

q = quantizer;

v = errvar(q)

v =

    7.761021455128987e-011

Now compare v to v_est, the sample variance from a Monte Carlo experiment:

r = realmax(q);

      u = 2*r*rand(1000,1)-r;  % Original signal

      y = quantize(q,u);     % Quantized signal

      e = y - u;           % Error

      v_est = var(e)     % Estimate of the error variance

v_est =



3 Functions — Alphabetical List

3-332

    7.520208858166330e-011

See Also
errmean | errpdf | quantize



 etreeplot

3-333

etreeplot
Plot elimination tree

Description

This function accepts fi objects as inputs.

Refer to the MATLAB etreeplot reference page for more information.



3 Functions — Alphabetical List

3-334

exponentbias
Exponent bias for quantizer object

Syntax

b = exponentbias(q)

Description

b = exponentbias(q) returns the exponent bias of the quantizer object q. For fixed-
point quantizer objects, exponentbias(q) returns 0.

Examples
q = quantizer('double');

b = exponentbias(q)

b =

        1023

More About

Algorithms

For floating-point quantizer objects,

b
e

= -
-

2 1
1

where e = eps(q), and exponentbias is the same as the exponent maximum.

For fixed-point quantizer objects, b = 0 by definition.

See Also
eps | exponentlength | exponentmax | exponentmin



 exponentlength

3-335

exponentlength
Exponent length of quantizer object

Syntax

e = exponentlength(q)

Description

e = exponentlength(q) returns the exponent length of quantizer object q. When
q is a fixed-point quantizer object, exponentlength(q) returns 0. This is useful
because exponent length is valid whether the quantizer object mode is floating point or
fixed point.

Examples
q = quantizer('double');

e = exponentlength(q)

e =

    11

More About

Algorithms

The exponent length is part of the format of a floating-point quantizer object [w e].
For fixed-point quantizer objects, e = 0 by definition.

See Also
eps | exponentbias | exponentmax | exponentmin



3 Functions — Alphabetical List

3-336

exponentmax
Maximum exponent for quantizer object

Syntax

exponentmax(q)

Description

exponentmax(q) returns the maximum exponent for quantizer object q. When q is a
fixed-point quantizer object, it returns 0.

Examples
q = quantizer('double');

emax = exponentmax(q)

emax =

        1023

More About

Algorithms

For floating-point quantizer objects,

E
max

e
= -

-

2 1
1

For fixed-point quantizer objects, E
max

= 0  by definition.

See Also
eps | exponentbias | exponentlength | exponentmin



 exponentmin

3-337

exponentmin
Minimum exponent for quantizer object

Syntax

emin = exponentmin(q)

Description

emin = exponentmin(q) returns the minimum exponent for quantizer object q. If q
is a fixed-point quantizer object, exponentmin returns 0.

Examples
q = quantizer('double');

emin = exponentmin(q)

emin =

       -1022

More About

Algorithms

For floating-point quantizer objects,

E
min

e
= - +

-
2 2

1

For fixed-point quantizer objects, E
min

= 0 .

See Also
eps | exponentbias | exponentlength | exponentmax



3 Functions — Alphabetical List

3-338

eye
Create identity matrix with fixed-point properties

Syntax

I = eye('like',p)

I = eye(n,'like',p)

I = eye(n,m,'like',p)

I = eye(sz,'like',p)

Description

I = eye('like',p) returns the scalar 1 with the same fixed-point properties and
complexity (real or complex) as the prototype argument, p. The output, I, contains the
same numerictype and fimath properties as p.

I = eye(n,'like',p) returns an n-by-n identity matrix like p, with ones on the main
diagonal and zeros elsewhere.

I = eye(n,m,'like',p) returns an n-by-m identity matrix like p.

I = eye(sz,'like',p) returns an array like p, where the size vector, sz, defines
size(I).

Examples

Create Identity Matrix with Fixed-Point Properties

Create a prototype fi object, p.

p = fi([],1,16,14);

Create a 3-by-4 identity matrix with the same fixed-point properties as p.

I = eye(3,4,'like',p)



 eye

3-339

I = 

     1     0     0     0

     0     1     0     0

     0     0     1     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 14

Create Identity Matrix with Attached fimath

Create a signed fi object with word length of 16, fraction length of 15 and
OverflowAction set to Wrap.

format long

p = fi([],1,16,15,'OverflowAction','Wrap');

Create a 2-by-2 identity matrix with the same numerictype properties as p.

X = eye(2,'like',p) 

X =

   0.999969482421875                   0

                   0   0.999969482421875

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

        RoundingMethod: Nearest

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision 

1 cannot be represented by the data type of p, so the value saturates. The output fi
object X has the same numerictype and fimath properties as p.

• “Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using
cast and zeros”



3 Functions — Alphabetical List

3-340

Input Arguments

n — Size of first dimension of I
integer value

Size of first dimension of I, specified as an integer value.

• If n is the only integer input argument, then I is a square n-by-n identity matrix.
• If n is 0, then I is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

m — Size of second dimension of I
integer value

Size of second dimension of I, specified as an integer value.

• If m is 0, then I is an empty matrix.
• If m is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Size of I
row vector of no more than two integer values

Size of I, specified as a row vector of no more than two integer values.

• If an element of sz is 0, then I is an empty matrix.
• If an element of sz is negative, then the element is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable.



 eye

3-341

If the value 1 overflows the numeric type of p, the output saturates regardless of the
specified OverflowAction property of the attached fimath. All subsequent operations
performed on the output obey the rules of the attached fimath.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

More About

Tips

Using the b = cast(a,'like',p) syntax to specify data types separately from
algorithm code allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements

for different data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm

code.

• “Manual Fixed-Point Conversion Best Practices”

See Also
ones | zeros



3 Functions — Alphabetical List

3-342

ezcontour
Easy-to-use contour plotter

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ezcontour reference page for more information.



 ezcontourf

3-343

ezcontourf
Easy-to-use filled contour plotter

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ezcontourf reference page for more information.



3 Functions — Alphabetical List

3-344

ezmesh
Easy-to-use 3-D mesh plotter

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ezmesh reference page for more information.



 ezplot

3-345

ezplot
Easy-to-use function plotter

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ezplot reference page for more information.



3 Functions — Alphabetical List

3-346

ezplot3
Easy-to-use 3-D parametric curve plotter

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ezplot3 reference page for more information.



 ezpolar

3-347

ezpolar
Easy-to-use polar coordinate plotter

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ezpolar reference page for more information.



3 Functions — Alphabetical List

3-348

ezsurf
Easy-to-use 3-D colored surface plotter

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ezsurf reference page for more information.



 ezsurfc

3-349

ezsurfc
Easy-to-use combination surface/contour plotter

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ezsurfc reference page for more information.



3 Functions — Alphabetical List

3-350

feather
Plot velocity vectors

Description

This function accepts fi objects as inputs.

Refer to the MATLAB feather reference page for more information.



 fi

3-351

fi

Construct fixed-point numeric object

Syntax

a = fi

a = fi(v)

a = fi(v,s)

a = fi(v,s,w)

a = fi(v,s,w,f)

a = fi(v,s,w,slope,bias)

a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias)

a = fi(v,T)

a = fi(v,F)

b = fi(a,F)

a = fi(v,T,F)

a = fi(v,s,F)

a = fi(v,s,w,F)

a = fi(v,s,w,f,F)

a = fi(v,s,w,slope,bias,F)

a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias,F)

a = fi(...'PropertyName',PropertyValue...)

a = fi('PropertyName',PropertyValue...)

Description

You can use the fi constructor function in the following ways:

• a = fi is the default constructor and returns a fi object with no value, 16-bit word
length, and 15-bit fraction length.

• a = fi(v) returns a signed fixed-point object with value v, 16-bit word length, and
best-precision fraction length when v is a double. When v is not a double, the fi
constructor preserves the numerictype of v, see “Create a fi Object From a Non-
Double Value” on page 3-357.



3 Functions — Alphabetical List

3-352

• a = fi(v,s) returns a fixed-point object with value v, Signed property value s, 16-
bit word length, and best-precision fraction length. s can be 0 (false) for unsigned or 1
(true) for signed.

• a = fi(v,s,w) returns a fixed-point object with value v, Signed property value s,
word length w, and best-precision fraction length.

• a = fi(v,s,w,f) returns a fixed-point object with value v, Signed property value
s, word length w, and fraction length f. Fraction length can be greater than word
length or negative, see “Create a fi Object With Fraction Length Greater Than Word
Length” on page 3-359 and “Create a fi Object With Negative Fraction Length” on
page 3-360.

• a = fi(v,s,w,slope,bias) returns a fixed-point object with value v, Signed
property value s, word length w, slope, and bias.

• a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns
a fixed-point object with value v, Signed property value s, word length w,
slopeadjustmentfactor, fixedexponent, and bias.

• a = fi(v,T) returns a fixed-point object with value v and embedded.numerictype
T. Refer to “numerictype Object Construction” for more information on numerictype
objects.

• a = fi(v,F) returns a fixed-point object with value v, embedded.fimath F, 16-bit
word length, and best-precision fraction length. Refer to “fimath Object Construction”
for more information on fimath objects.

• b = fi(a,F) allows you to maintain the value and numerictype object of fi object
a, while changing its fimath object to F.

• a = fi(v,T,F) returns a fixed-point object with value v, embedded.numerictype
T, and embedded.fimath F. The syntax a = fi(v,T,F) is equivalent to a =
fi(v,F,T).

• a = fi(v,s,F) returns a fixed-point object with value v, Signed property value s,
16-bit word length, best-precision fraction length, and embedded.fimath F.

• a = fi(v,s,w,F) returns a fixed-point object with value v, Signed property value
s, word length w, best-precision fraction length, and embedded.fimath F.

• a = fi(v,s,w,f,F) returns a fixed-point object with value v, Signed property
value s, word length w, fraction length f, and embedded.fimath F.

• a = fi(v,s,w,slope,bias,F) returns a fixed-point object with value v, Signed
property value s, word length w, slope, bias, and embedded.fimath F.



 fi

3-353

• a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias,F) returns
a fixed-point object with value v, Signed property value s, word length w,
slopeadjustmentfactor, fixedexponent, bias, and embedded.fimath F.

• a = fi(...'PropertyName',PropertyValue...) and a =
fi('PropertyName',PropertyValue...) allow you to set fixed-point objects for a
fi object by property name/property value pairs.

The fi object has the following three general types of properties:

• “Data Properties” on page 3-353
• “fimath Properties” on page 3-353
• “numerictype Properties” on page 3-355

Note: These properties are described in detail in “fi Object Properties” in the Properties
Reference.

Data Properties

The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary
• data — Numerical real-world value of a fi object
• dec — Stored integer value of a fi object in decimal
• double — Real-world value of a fi object, stored as a MATLAB double
• hex — Stored integer value of a fi object in hexadecimal
• int — Stored integer value of a fi object, stored in a built-in MATLAB integer data

type.
• oct — Stored integer value of a fi object in octal

These properties are described in detail in “fi Object Properties”.

fimath Properties

When you create a fi object and specify fimath object properties in the fi constructor, a
fimath object is created as a property of the fi object. If you do not specify any fimath
properties in the fi constructor, the resulting fi has no attached fimath object.



3 Functions — Alphabetical List

3-354

• fimath — fimath properties associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi object. The
properties of the fimath object listed below are always writable.

• CastBeforeSum — Whether both operands are cast to the sum data type before
addition

Note: This property is hidden when the SumMode is set to FullPrecision.

• MaxProductWordLength — Maximum allowable word length for the product data
type

• MaxSumWordLength — Maximum allowable word length for the sum data type
• OverflowAction — Overflow mode
• ProductBias — Bias of the product data type
• ProductFixedExponent — Fixed exponent of the product data type
• ProductFractionLength — Fraction length, in bits, of the product data type
• ProductMode — Defines how the product data type is determined
• ProductSlope — Slope of the product data type
• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data

type
• ProductWordLength — Word length, in bits, of the product data type
• RoundingMethod — Rounding mode
• SumBias — Bias of the sum data type
• SumFixedExponent — Fixed exponent of the sum data type
• SumFractionLength — Fraction length, in bits, of the sum data type
• SumMode — Defines how the sum data type is determined
• SumSlope — Slope of the sum data type
• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
• SumWordLength — The word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties”.



 fi

3-355

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a
property of the fi object.

numerictype — Object containing all the data type information of a fi object, Simulink
signal or model parameter

The following numerictype properties are, by transitivity, also properties of a fi object.
The properties of the numerictype object become read only after you create the fi
object. However, you can create a copy of a fi object with new values specified for the
numerictype properties.

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object
• DataTypeMode — Data type and scaling mode of a fi object
• DataTypeOverride — Data type override for applying fipref data type override

settings to fi objects. This property provides a convenient way to ignore a global
fipref data type override setting. Note that this property is not visible when its
value is the default, Inherit. When this property is set to Off, the fi object uses the
numerictype data type settings and ignores fipref settings.

• FixedExponent — Fixed-point exponent associated with a fi object
• SlopeAdjustmentFactor — Slope adjustment associated with a fi object
• FractionLength — Fraction length of the stored integer value of a fi object in bits
• Scaling — Fixed-point scaling mode of a fi object
• Signed — Whether a fi object is signed or unsigned
• Signedness — Whether a fi object is signed or unsigned

Note: numerictype objects can have a Signedness of Auto, but all fi objects must
be Signed or Unsigned. If a numerictype object with Auto Signedness is used to
create a fi object, the Signedness property of the fi object automatically defaults to
Signed.

• Slope — Slope associated with a fi object
• WordLength — Word length of the stored integer value of a fi object in bits

For further details on these properties, see “numerictype Object Properties”.



3 Functions — Alphabetical List

3-356

Examples

Note For information about the display format of fi objects, refer to “View Fixed-Point
Data”.

For examples of casting, see “Cast fi Objects”.

Create a fi Object

Create a signed fi object with a value of pi, a word length of 8 bits, and a fraction length
of 3 bits.

a = fi(pi, 1, 8, 3) 

a =

 

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

Create an Array of fi Objects

a = fi((magic(3)/10), 1, 16, 12) 

a =

 

    0.8000    0.1001    0.6001

    0.3000    0.5000    0.7000

    0.3999    0.8999    0.2000

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 12



 fi

3-357

Create a fi Object With Default Precision

If you omit the argument f, the fraction length is set automatically to achieve the best
precision possible.

 a = fi(pi, 1, 8) 

a =

 

    3.1563

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 5

Create a fi Object With Default Word Length and Precision

If you omit w and f, the word length is set automatically to 16 bits and the fraction
length is set to achieve the best precision possible.

a = fi(pi, 1) 

a =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

Create a fi Object From a Non-Double Value

When you create a fi object using the default constructor and a non-double input value,
v, the constructor retains the numerictype of v.

When the input is a builtin integer, the fixed-point attributes match the attributes of the
integer type.

v = uint32(5);

a = fi(v)



3 Functions — Alphabetical List

3-358

a = 

     5

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 32

        FractionLength: 0

The output a is a fi object that uses the word length, fraction length, and signedness of
the input v.

When the input is a fi object, the output uses the same word length, fraction length, and
signedness of the input fi object.

v = fi(pi, 1, 24, 12);

a = fi(v)

a = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

When the input v is logical, then the output a has DataTypeMode: Boolean.

v = true;

a =  fi(v) 

a = 

     1

          DataTypeMode: Boolean

When the input is single, the output a has DataTypeMode: Single.

v = single(pi);

a =  fi(v) 

a = 

    3.1416



 fi

3-359

          DataTypeMode: Single

Create a fi Object With Fraction Length Greater Than Word Length

When you use binary-point representation for a fixed-point number, the fraction length
can be greater than the word length. In this case, there are implicit leading zeros (for
positive numbers) or ones (for negative numbers) between the binary point and the first
significant binary digit.

Consider a signed value with a word length of 8, fraction length of 10 and a stored
integer value of 5. We can calculate the real-world value.

RealWorldValue = StoredInteger * 2 ^ -FractionLength

RealWorldValue = 5 * 2 ^ -10 = 0.0048828125

Create a signed fi object with a value of 0.0048828125, a word length of 8 bits, and a
fraction length of 10 bits.

a = fi(0.0048828125, true, 8, 10) 

a = 

   0.004882812500000

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 10

Get the stored integer value of a.

a.int

ans =

5

Get the binary value of the stored integer.

a.bin



3 Functions — Alphabetical List

3-360

ans =

00000101

Because the fraction length is 2 bits longer than the word length, the binary value
of the stored integer is x.xx00000101 , where x is a placeholder for implicit zeros.
0.0000000101 (binary) is equivalent to 0.0048828125 (decimal).

Create a fi Object With Negative Fraction Length

When you use binary-point representation for a fixed-point number, the fraction length
can be negative. In this case, there are implicit trailing zeros (for positive numbers) or
ones (for negative numbers) between the binary point and the first significant binary
digit.

Consider a signed value with a word length of 8, fraction length of –2 and a stored
integer value of 5. We can calculate the real-world value.

RealWorldValue = StoredInteger * 2 ^ -FractionLength

RealWorldValue = 5 * 2 ^ 2 = 20

Create a signed fi object with a value of 20, a word length of 8 bits, and a fraction length
of –2 bits.

a = fi(20, true, 8, -2)

a = 

   20

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 10

Get the stored integer value of a.

a.int

ans =



 fi

3-361

5

Get the binary value of the stored integer.

a.bin

ans =

00000101

Because the fraction length is negative, the binary value of the stored integer is
00000101xx , where x is a placeholder for implicit zeros. 000000010100 (binary) is
equivalent to 20 (decimal).

Create a fi Object Specifying Rounding and Overflow

You can use property name/property value pairs to set fi properties, such as rounding
method and overflow action, when you create the object.

a = fi(pi, 'RoundingMethod', 'Floor', 'OverflowAction', 'Wrap') 

a =

    3.1415

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

        RoundingMethod: Floor

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

Remove Local fimath

You can remove a local fimath object from a fi object at any time using the
removefimath function.

a = fi(pi, 'RoundingMethod', 'Floor', 'OverflowAction', 'Wrap')

a = removefimath(a)

a =

    3.1415



3 Functions — Alphabetical List

3-362

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

        RoundingMethod: Floor

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

a =

    3.1415

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

fi object a now has no local fimath. To reassign it a local fimath object, use the
setfimath function.

a = setfimath(a, fimath('ProductMode', 'KeepLSB'))

a =

    3.1415

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: KeepLSB

     ProductWordLength: 32

               SumMode: FullPrecision

fi object a now has a local fimath object with a ProductMode of KeepLSB. The values
of the remaining fimath object properties are default fimath values.

Use fi as an Indexing Argument

Set up an array to be indexed.



 fi

3-363

x = 10:-1:1

x =

    10  9  8  7  6  5  4  3  2  1

Create a fi object and use it to index into x.

k = fi(3);

y = x(k)

y =

     8

Use fi in a Switch Statement

You can use a fi object as the switch condition and as one or more of the cases in the
switch expression.

function y = test_switch(u, v)

   cExpr = fi(u + v, 0, 2, 0);

   t = 1;

   switch cExpr  % condition expression type: ufix2

      case 0    

         y = t * 2;

      case fi(1,0,2,0)

         y = t * 3;

      case 2

         y = t * 4;

      case 3

         y = t * 3;

      otherwise

         y = 0;

   end

end

y = test_switch(1,2.0)

y =

     3

Use fi as a Colon Operator

Use a fi object as a colon operator.



3 Functions — Alphabetical List

3-364

When you use fi as a colon operator, all colon operands must have integer values.

a=fi(1,0,3,0);

b=fi(2,0,8,0);

c=fi(12,0,8,0);

x=a:b:c

x = 

     1     3     5     7     9    11

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 8

        FractionLength: 0

Create Fixed-point Vector With Non-integer Spacing

To create a fixed-point vector with non-integer spacing, first create the vector, then cast
the vector to fixed-point.

x = fi(0:0.1:10);

Alternatively, use the linspace function.

x = fi(linspace(0,10, 101));

The following code, where one of the colon operands is not an integer, generates an error.

a = fi(0);

b = fi(0.1);

c = fi(10);

z = a:b:c

Use fi in a For Loop

Use a fi object as the index of a for-loop.

a = fi(1,0,8,0);

b = fi(2,0,8,0);

c = fi(10,0,8,0);



 fi

3-365

for x = a:b:c

 x

end

Set Data Type Override on a fi Object

Set the DataTypeOverride property of a fi object so that the fi object does not use the
data type override settings of the fipref object.

Set up fipref with data type override set to 'TrueDoubles' for all numeric types.

fipref('DataTypeOverride', 'TrueDoubles')

ans = 

                NumberDisplay: 'RealWorldValue'

           NumericTypeDisplay: 'full'

                FimathDisplay: 'full'

                  LoggingMode: 'Off'

             DataTypeOverride: 'TrueDoubles'

    DataTypeOverrideAppliesTo: 'AllNumericTypes'

Create a new fi object without specifying its DataTypeOverride property so that it
uses the data type override settings specified using fipref.

x = fi(pi, 1, 16, 13)

x = 

    3.1416

          DataTypeMode: Double

Now create a fi object and set its DataTypeOverride property to 'Off' so that it
ignores the data type override settings specified using fipref.

y = fi(pi, 1, 16, 13, 'DataTypeOverride','Off')

y = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed



3 Functions — Alphabetical List

3-366

            WordLength: 16

        FractionLength: 13

More About
• “fi Object Functions”
• “Binary Point Interpretation”

See Also
fimath | fipref | isfimathlocal | numerictype | quantizer | sfi | ufi



 fiaccel

3-367

fiaccel

Accelerate fixed-point code and convert floating-point MATLAB code to fixed-point
MATLAB code

Syntax

fiaccel -options fcn

fiaccel -float2fixed fcn

Description

fiaccel -options fcn translates the MATLAB file fcn.m to a MEX function,
which accelerates fixed-point code. To use fiaccel, your code must meet one of these
requirements:

• The top-level function has no inputs or outputs, and the code uses fi
• The top-level function has an output or a non-constant input, and at least one output

or input is a fi.
• The top-level function has at least one input or output containing a built-in integer

class (int8, uint8, int16, uint16, int32, uint32, int64, or uint64), and the
code uses fi.

Note: If your top-level file is on a path that contains Unicode characters, code generation
might not be able to find the file.

fiaccel -float2fixed fcn converts the floating-point MATLAB function, fcn to
fixed-point MATLAB code.



3 Functions — Alphabetical List

3-368

Input Arguments

fcn

MATLAB function from which to generate a MEX function. fcn must be suitable for
code generation. For information on code generation, see “Code Acceleration and Code
Generation from MATLAB”

options

Choice of compiler options. fiaccel gives precedence to individual command-line
options over options specified using a configuration object. If command-line options
conflict, the rightmost option prevails.

-args example_inputs Define the size, class, and complexity of
all MATLAB function inputs. Use the
values in example_inputs to define these
properties. example_inputs must be a
cell array that specifies the same number
and order of inputs as the MATLAB
function.

-config config_object Specify MEX generation parameters, based
on config_object, defined as a MATLAB
variable using coder.mexconfig. For
example:

cfg = coder.mexconfig;

-d out_folder Store generated files in the absolute or
relative path specified by out_folder. If
the folder specified by out_folder does
not exist, fiaccel creates it for you.

If you do not specify the folder location,
fiaccel generates files in the default
folder:

fiaccel/mex/fcn. 

fcn is the name of the MATLAB function
specified at the command line.



 fiaccel

3-369

The function does not support the following
characters in folder names: asterisk (*),
question-mark (?), dollar ($), and pound
(#).

-float2fixed float2fixed_cfg_name Generates fixed-point MATLAB code using
the settings specified by the floating-point
to fixed-point conversion configuration
object named float2fixed_cfg_name.

For this option, fiaccel generates files in
the folder codegen/fcn_name/fixpt.

You must set the TestBenchName property
of float2fixed_cfg_name. For example:

fixptcfg.TestBenchName = 'myadd_test';

specifies that myadd_test is the test
file for the floating-point to fixed-point
configuration object fixptcfg.

You cannot use this option with the -
global option.

-g Compiles the MEX function in debug
mode, with optimization turned off. If not
specified, fiaccel generates the MEX
function in optimized mode.



3 Functions — Alphabetical List

3-370

-global global_values Specify initial values for global variables
in MATLAB file. Use the values in cell
array global_values to initialize global
variables in the function you compile. The
cell array should provide the name and
initial value of each global variable. You
must initialize global variables before
compiling with fiaccel. If you do not
provide initial values for global variables
using the -global option, fiaccel checks
for the variable in the MATLAB global
workspace. If you do not supply an initial
value, fiaccel generates an error.

The generated MEX code and MATLAB
each have their own copies of global
data. To ensure consistency, you must
synchronize their global data whenever the
two interact. If you do not synchronize the
data, their global variables might differ.

You cannot use this option with the -
float2fixed option.

-I include_path Add include_path to the beginning of the
code generation path.

fiaccel searches the code generation path
first when converting MATLAB code to
MEX code.

-launchreport Generate and open a code generation
report. If you do not specify this option,
fiaccel generates a report only if error or
warning messages occur or you specify the
-report option.



 fiaccel

3-371

-o output_file_name Generate the MEX function with the base
name output_file_name plus a platform-
specific extension.

output_file_name can be a file name or
include an existing path.

If you do not specify an output file name,
the base name is fcn_mex, which allows
you to run the original MATLAB function
and the MEX function and compare the
results.

-O optimization_option Optimize generated MEX code, based on
the value of optimization_option:

• enable:inline — Enable function
inlining

• disable:inline — Disable function
inlining

If not specified, fiaccel uses inlining for
optimization.

-report Generate a code generation report. If
you do not specify this option, fiaccel
generates a report only if error or warning
messages occur or you specify the -
launchreport option.

-? Display help for fiaccel command.

Examples

Create a test file and compute the moving average. Then, use fiaccel to accelerate the
code and compare.

function avg = test_moving_average(x)

%#codegen

if nargin < 1,

    x = fi(rand(100,1),1,16,15);



3 Functions — Alphabetical List

3-372

end

z = fi(zeros(10,1),1,16,15);

avg = x;

for k = 1:length(x)

    [avg(k),z] = moving_average(x(k),z);

end

function [avg,z] = moving_average(x,z)

%#codegen

if nargin < 2,

    z = fi(zeros(10,1),1,16,15);

end

z(2:end) = z(1:end-1);   % Update buffer

z(1) = x;                % Add new value

avg = mean(z);          % Compute moving average

% Use fiaccel to create a MEX function and 

% accelerate the code

x = fi(rand(100,1),1,16,15);

fiaccel test_moving_average -args {x} -report

% Compare the non-accelerated and accelerated code.

x = fi(rand(100,1),1,16,15);

% Non-compiled version

tic,avg = test_moving_average(x);toc

% Compiled version

tic,avg = test_moving_average_mex(x);toc

Convert Floating-Point MATLAB Code to Fixed Point

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.

fixptcfg.TestBenchName = 'dti_test';

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example,
the MATLAB function name is dti.



 fiaccel

3-373

fiaccel -float2fixed fixptcfg dti

See Also
coder.Constant | coder.FiType | coder.StructType | coder.FixptConfig |
coder.ArrayType | coder.EnumType | coder.newtype | coder.PrimitiveType
| coder.resize | coder.Type | coder.typeof | coder.mexconfig |
coder.MexConfig | coder.config



3 Functions — Alphabetical List

3-374

filter

One-dimensional digital filter of fi objects

Syntax

y = filter(b,1,x)

[y,zf] = filter(b,1,x,zi)

y = filter(b,1,x,zi,dim)

Description

y = filter(b,1,x) filters the data in the fixed-point vector x using the filter described
by the fixed-point vector b. The function returns the filtered data in the output fi
object y. Inputs b and x must be fi objects. filter always operates along the first
non-singleton dimension. Thus, the filter operates along the first dimension for column
vectors and nontrivial matrices, and along the second dimension for row vectors.

[y,zf] = filter(b,1,x,zi)  gives access to initial and final conditions of the
delays, zi, and zf. zi is a vector of length length(b)-1, or an array with the leading
dimension of size length(b)-1 and with remaining dimensions matching those of x. zi
must be a fi object with the same data type as y and zf. If you do not specify a value for
zi, it defaults to a fixed-point array with a value of 0 and the appropriate numerictype
and size.

y = filter(b,1,x,zi,dim) performs the filtering operation along the specified
dimension. If you do not want to specify the vector of initial conditions, use [] for the
input argument zi.

Input Arguments

b

Fixed-point vector of the filter coefficients.



 filter

3-375

x

Fixed-point vector containing the data for the function to filter.

zi

Fixed-point vector containing the initial conditions of the delays. If the initial conditions
of the delays are zero, you can specify zero, or, if you do not know the appropriate size
and numerictype for zi, use [].

If you do not specify a value for zi, the parameter defaults to a fixed-point vector with a
value of zero and the same numerictype and size as the output zf (default).

dim

Dimension along which to perform the filtering operation.

Output Arguments

y

Output vector containing the filtered fixed-point data.

zf

Fixed-point output vector containing the final conditions of the delays.

Examples

Filter a high-frequency fixed-point sinusoid from a signal

The following example filters a high-frequency fixed-point sinusoid from a signal that
contains both a low- and high-frequency fixed-point sinusoid.

w1 = .1*pi;

w2 = .6*pi;

n  = 0:999;

xd = sin(w1*n) + sin(w2*n);



3 Functions — Alphabetical List

3-376

x  = sfi(xd,12);

b  = ufi([.1:.1:1,1-.1:-.1:.1]/4,10);

gd = (length(b)-1)/2;

y  = filter(b,1,x);

% Plot results, accommodate for group-delay of filter

plot(n(1:end-gd),x(1:end-gd))

hold on

plot(n(1:end-gd),y(gd+1:end),'r--')

axis([0 50 -2 2])

legend('Unfiltered signal','Filtered signal')

xlabel('Sample index (n)')

ylabel('Signal value')



 filter

3-377

The resulting plot shows both the unfiltered and filtered signals.

More About

Filter length (L)

The filter length is length(b), or the number of filter coefficients specified in the fixed-
point vector b.

Filter order (N)

The filter order is the number of states (delays) of the filter, and is equal to L-1.

Tips

• The filter function only supports FIR filters. In the general filter representation,
b/a, the denominator, a, of an FIR filter is the scalar 1, which is the second input of
this function.

• The numerictype of b can be different than the numerictype of x.
• If you want to specify initial conditions, but do not know what numerictype to use,

first try filtering your data without initial conditions. You can do so by specifying []
for the input zi. After performing the filtering operation, you have the numerictype
of y and zf (if requested). Because the numerictype of zi must match that of y and
zf, you now know the numerictype to use for the initial conditions.

Algorithms

The filter function uses a Direct-Form Transposed FIR implementation of the
following difference equation:

y n b x b x b xn n L n N( ) * * ... *= + + +
- -1 2 1

where L is the filter length and N is the filter order.

The following diagram shows the direct-form transposed FIR filter structure used by the
filter function:



3 Functions — Alphabetical List

3-378

Section

input

1 b1

b2

+

+

Section

output

1

+

+

bL

z-1

z-1

+

+

bL-1

z-1

fimath Propagation Rules

The filter function uses the following rules regarding fimath behavior:

• globalfimath is obeyed.
• If any of the inputs has an attached fimath, then it is used for intermediate

calculations.
• If more than one input has an attached fimath, then the fimaths must be equal.
• The output, y, is always associated with the default fimath.
• If the input vector, zi, has an attached fimath, then the output vector, zf, retains

this fimath.

See Also
conv | filter



 fimath

3-379

fimath
Set fixed-point math settings

Syntax

F = fimath

F = fimath(...'PropertyName',PropertyValue...)

Description

You can use the fimath constructor function in the following ways:

• F = fimath creates a fimath object with default fimath property settings:

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: FullPrecision

• F = fimath(...'PropertyName',PropertyValue...) allows you to set the
attributes of a fimath object using property name/property value pairs. All property
names that you do not specify in the constructor use default values.

The properties of the fimath object are listed below. These properties are described in
detail in “fimath Object Properties” in the Properties Reference.

• CastBeforeSum — Whether both operands are cast to the sum data type before
addition

Note: This property is hidden when the SumMode is set to FullPrecision.
• OverflowAction — Action to take on overflow
• ProductBias — Bias of the product data type
• ProductFixedExponent — Fixed exponent of the product data type
• ProductFractionLength — Fraction length, in bits, of the product data type
• ProductMode — Defines how the product data type is determined



3 Functions — Alphabetical List

3-380

• ProductSlope — Slope of the product data type
• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data

type
• ProductWordLength — Word length, in bits, of the product data type
• RoundingMethod — Rounding method
• SumBias — Bias of the sum data type
• SumFixedExponent — Fixed exponent of the sum data type
• SumFractionLength — Fraction length, in bits, of the sum data type
• SumMode — Defines how the sum data type is determined
• SumSlope — Slope of the sum data type
• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
• SumWordLength — Word length, in bits, of the sum data type

Examples

Create a Default fimath Object

F = fimath

 

F =

 

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: FullPrecision

Set Properties of a fimath Object

Set properties of a fimath object at the time of object creation by including properties
after the arguments of the fimath constructor function. For example, set the overflow
action to Saturate and the rounding method to Convergent.

F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

 

F =



 fimath

3-381

 

        RoundingMethod: Convergent

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: FullPrecision

• “fimath Object Construction”

More About
• “fimath Object Properties”
• How Functions Use fimath
• “fimath Properties Usage for Fixed-Point Arithmetic”

See Also
fi | fipref | globalfimath | numerictype | quantizer | removefimath |
setfimath



3 Functions — Alphabetical List

3-382

fipref
Set fixed-point preferences

Syntax

P = fipref

P = fipref(...'PropertyName',PropertyValue...)

Description

You can use the fipref constructor function in the following ways:

• P = fipref creates a default fipref object.
• P = fipref(...'PropertyName',PropertyValue...)  allows you to set the

attributes of a object using property name/property value pairs.

The properties of the fipref object are listed below. These properties are described in
detail in “fipref Object Properties”.

• FimathDisplay — Display options for the local fimath attributes of fi objects.
When fi objects to not have a local fimath, their fimath attributes are never
displayed.

• DataTypeOverride — Data type override options.
• DataTypeOverrideAppliesTo— Data type override setting applicability.
• LoggingMode — Logging options for operations performed on fi objects.
• NumericTypeDisplay — Display options for the numeric type attributes of a fi

object.
• NumberDisplay — Display options for the value of a fi object.

Your fipref settings persist throughout your MATLAB session. Use reset(fipref) to
return to the default settings during your session. Use savefipref to save your display
preferences for subsequent MATLAB sessions.

See “View Fixed-Point Data” for more information on the display preferences used for
most code examples in the documentation.



 fipref

3-383

Examples

Example 1

Type

P = fipref

to create a default fipref object.

P =

 

         NumberDisplay: 'RealWorldValue'

    NumericTypeDisplay: 'full'

         FimathDisplay: 'full'

           LoggingMode: 'Off'

      DataTypeOverride: 'ForceOff'

Example 2

You can set properties of fipref objects at the time of object creation by including
properties after the arguments of the fipref constructor function. For example, to set
NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref('NumberDisplay','bin',...

   'NumericTypeDisplay', 'short')

 

P =

 

         NumberDisplay: 'bin'

    NumericTypeDisplay: 'short'

         FimathDisplay: 'full'

           LoggingMode: 'Off'

      DataTypeOverride: 'ForceOff'

More About
• “fipref Object Properties”

See Also
fi | fimath | numerictype | quantizer | savefipref



3 Functions — Alphabetical List

3-384

fix
Round toward zero

Syntax

y = fix(a)

Description

y = fix(a) rounds fi object a to the nearest integer in the direction of zero and
returns the result in fi object y.

y and a have the same fimath object and DataType property.

When the DataType property of a is single, double, or boolean, the numerictype of
y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer, and the
numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0, its sign is the
same as that of a, and its word length is the difference between the word length and
the fraction length of a. If a is signed, then the minimum word length of y is 2. If a is
unsigned, then the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded independently.

fix does not support fi objects with nontrivial slope and bias scaling. Slope and bias
scaling is trivial when the slope is an integer power of 2 and the bias is 0.

Examples

Example 1

The following example demonstrates how the fix function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 3.



 fix

3-385

a = fi(pi, 1, 8, 3) 

a =

 

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

y = fix(a) 

y =

 

     3

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 5

        FractionLength: 0

Example 2

The following example demonstrates how the fix function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12) 

a =

 

    0.0249

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 12

y = fix(a) 

y =

 

     0



3 Functions — Alphabetical List

3-386

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 2

        FractionLength: 0

Example 3

The functions ceil, fix, and floor differ in the way they round fi objects:

• The ceil function rounds values to the nearest integer toward positive infinity
• The fix function rounds values toward zero
• The floor function rounds values to the nearest integer toward negative infinity

The following table illustrates these differences for a given fi object a.

a ceil(a) fix(a) floor(a)

– 2.5 –2 –2 –3
–1.75 –1 –1 –2
–1.25 –1 –1 –2
–0.5 0 0 –1
0.5 1 0 0
1.25 2 1 1
1.75 2 1 1
2.5 3 2 2

See Also
ceil | convergent | floor | nearest | round



 fixed.aggregateType

3-387

fixed.aggregateType
Compute aggregate numerictype

Syntax

aggNT = fixed.aggregateType(A,B)

Description

aggNT = fixed.aggregateType(A,B) computes the smallest binary point scaled
numerictype that is able to represent both the full range and precision of inputs A and B.

Input Arguments

A

An integer, binary point scaled fixed-point fi object, or numerictype object.

B

An integer, binary point scaled fixed-point fi object, or numerictype object.

Output Arguments

aggNT

A numerictype object.

Examples

Compute the aggregate numerictype of two numerictype objects.

% can represent range [-4,4) and precision 2^-13



3 Functions — Alphabetical List

3-388

a_nt = numerictype(1,16,13); 

% can represent range [-2,2) and precision 2^-16

b_nt = numerictype(1,18,16); 

% can represent range [-4,4) and precision 2^-16

aggNT = fixed.aggregateType(a_nt,b_nt)

aggNT =

 

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 19

        FractionLength: 16

Compute the aggregate numerictype of two fi objects.

% Unsigned, WordLength: 16, FractionLength: 14

a_fi = ufi(pi,16); 

% Signed, WordLength: 24, FractionLength: 21

b_fi = sfi(-pi,24); 

% Signed, WordLength: 24, FractionLength: 21

aggNT = fixed.aggregateType(a_fi,b_fi)

aggNT =

 

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 21

Compute the aggregate numerictype of a fi object and an integer.

% Unsigned, WordLength: 16, FractionLength: 14

% can represent range [0,3] and precision 2^-14

a_fi = ufi(pi,16);

% Unsigned, WordLength: 8, FractionLength: 0

% can represent range [0,255] and precision 2^0

cInt = uint8(0); 

% Unsigned with WordLength: 14+8, FractionLength: 14

% can represent range [0,255] and precision 2^-14

aggNT = fixed.aggregateType(a_fi,cInt)

aggNT =

 



 fixed.aggregateType

3-389

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 22

        FractionLength: 14

See Also
numerictype | fi



3 Functions — Alphabetical List

3-390

fixed.Quantizer
Quantize fixed-point numbers

Syntax
q = fixed.Quantizer

q = fixed.Quantizer(nt,rm,oa)

q = fixed.Quantizer(s,wl,fl,rm,oa)

q = fixed.Quantizer(Name,Value)

Description
q = fixed.Quantizer creates a quantizer q that quantizes fixed-point (fi) numbers
using default fixed-point settings.

q = fixed.Quantizer(nt,rm,oa) uses the numerictype (nt) object information and
the RoundingMethod (rm) and OverflowAction (oa) properties.

The numerictype, rounding method, and overflow action apply only during the
quantization. The resulting, quantized q does not have any fimath attached to it.

q = fixed.Quantizer(s,wl,fl,rm,oa) uses the Signed (s), WordLength (wl),
FractionLength (fl), RoundingMethod (rm), and OverflowAction (oa) properties.

q = fixed.Quantizer(Name,Value) creates a quantizer with the property
options specified by one or more Name,Value pair arguments. You separate pairs of
Name,Value arguments with commas. Name is the argument name, and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
nt

Binary-point, scaled numerictype object or slope-bias scaled, fixed-point numerictype
object. If your fixed.Quantizer uses a numerictype object that has either a
Signedness of Auto or unspecified Scaling, an error occurs.



 fixed.Quantizer

3-391

rm

Rounding method to apply to the output data. Valid rounding methods are: Ceiling,
Convergent, Floor, Nearest, Round, and Zero. The associated property name is
RoundingMethod.

Default: Floor

oa

Overflow action to take in case of data overflow. Valid overflow actions are Saturate
and Wrap. The associated property name is OverflowAction.

Default: Wrap

s

Logical value, true or false, indicating whether the output is signed or unsigned,
respectively. The associated property name is Signed.

Default: true

wl

Word length (number of bits) of the output data. The associated property name is
WordLength.

Default: 16

fl

Fraction length of the output data. The associated property name is FractionLength.

Default: 15

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.



3 Functions — Alphabetical List

3-392

'Bias'

The bias is part of the numerical representation used to interpret a fixed-point number.
Along with the slope, the bias forms the scaling of the number.

Default: 0

'FixedExponent'

Fixed-point exponent associated with the object. The exponent is part of the numerical
representation used to express a fixed-point number.

The exponent of a fixed-point number is equal to the negative of the fraction length.
FixedExponent must be an integer.

Default: -15

'FractionLength'

Fraction length of the stored integer value of the object, in bits. The fraction length can
be any integer value.

This property automatically defaults to the best precision possible based on the value of
the word length and the real-world value of the fi object.

Default: 15

'OverflowAction'

Action to take in case of data overflow. Valid overflow actions are Saturate and Wrap. .

Default: Wrap

'RoundingMethod'

Rounding method to apply to the output data. Valid rounding methods are: Ceiling,
Convergent, Floor, Nearest, Round, and Zero.

Default: Floor

'Scaling'

Scaling mode of the object. The possible values of this property are:



 fixed.Quantizer

3-393

• BinaryPoint — Scaling for the fi object is defined by the fraction length.
• SlopeBias — Scaling for the fi object is defined by the slope and bias.
• Unspecified — A temporary setting that is only allowed at fi object creation, to

allow for the automatic assignment of a binary point best-precision scaling.

Default: BinaryPoint

'Signed'

Whether the object is signed. The possible values of this property are:

• 1 — signed
• 0 — unsigned
• true — signed
• false — unsigned

Note: Although the Signed property is still supported, the Signedness property
always appears in the numerictype object display. If you choose to change or set the
signedness of your numerictype object using the Signed property, MATLAB updates
the corresponding value of the Signedness property.

Default: true

'Signedness'

Whether the object is signed, unsigned, or has an unspecified sign. The possible values of
this property are:

• Signed — signed
• Unsigned — unsigned

Default: Signed

'Slope'

Slope associated with the object. The slope is part of the numerical representation used to
express a fixed-point number. Along with the bias, the slope forms the scaling of a fixed-
point number.



3 Functions — Alphabetical List

3-394

Default: 2^-15

'SlopeAdjustmentFactor'

Slope adjustment associated with the object. The slope adjustment is equivalent to the
fractional slope of a fixed-point number. The fractional slope is part of the numerical
representation used to express a fixed-point number.

SlopeAdjustmentFactor must be greater than or equal to 1 and less than 2.

Default: 1

'WordLength'

Word length of the stored integer value of the object, in bits. The word length can be any
positive integer value.

Default: 16

Output Arguments

q

Quantizer that quantizes fi input numbers

Examples

Use fixed.Quantizer to reduce the word length that results from adding two fixed-
point numbers.

q = fixed.Quantizer;

x1 = fi(0.1,1,16,15);

x2 = fi(0.8,1,16,15);

y  = quantize(q,x1+x2); 

Use fixed.Quantizer object to change a binary point scaled fixed-point fi to a slope-
bias scaled fixed-point fi

qsb = fixed.Quantizer(numerictype(1,7,1.6,0.2),...

  'Round','Saturate');



 fixed.Quantizer

3-395

ysb = quantize(qsb,fi(pi,1,16,13));

More About

Fixed-point numbers

Fixed-point numbers can be represented as

real world value slope stored integer bias- = ¥ +( )

where the slope can be expressed as

slope fractional slope fixed exponent
= ¥2

Tips

• Use y = quantize(q,x) to quantize input array x using the fixed-point settings
of quantizer q. x can be any fixed-point number fi, except a Boolean value. If x is a
scaled double, the x and y data will be the same, but y will have fixed-point settings.
If x is a double or single then y = x. This functionality lets you share the same code
for both floating-point data types and fi objects when quantizers are present.

• Use n = numerictype(q) to get a numerictype for the current settings of quantizer
q.

• Use clone(q) to create a quantizer object with the same property values as q.
• If you use a fixed.quantizer in code generation, note that it is a handle object and

must be declared as persistent.

• “Set numerictype Object Properties”

See Also
fi | numerictype | quantizer



3 Functions — Alphabetical List

3-396

fixpt_instrument_purge
Remove corrupt fixed-point instrumentation from model

Note: fixpt_instrument_purge will be removed in a future release.

Syntax
fixpt_instrument_purge

fixpt_instrument_purge(modelName, interactive)

Description
The fixpt_instrument_purge script finds and removes fixed-point instrumentation
from a model left by the Fixed-Point Tool and the fixed-point autoscaling script.
The Fixed-Point Tool and the fixed-point autoscaling script each add callbacks to a
model. For example, the Fixed-Point Tool appends commands to model-level callbacks.
These callbacks make the Fixed-Point Tool respond to simulation events. Similarly,
the autoscaling script adds instrumentation to some parameter values that gathers
information required by the script.

Normally, these types of instrumentation are automatically removed from a model.
The Fixed-Point Tool removes its instrumentation when the model is closed. The
autoscaling script removes its instrumentation shortly after it is added. However, there
are cases where abnormal termination of a model leaves fixed-point instrumentation
behind. The purpose of fixpt_instrument_purge is to find and remove fixed-point
instrumentation left over from abnormal termination.

fixpt_instrument_purge(modelName, interactive) removes instrumentation
from model modelName. interactive is true by default, which prompts you to
make each change. When interactive is set to false, all found instrumentation is
automatically removed from the model.

See Also
autofixexp | fxptdlg



 flip

3-397

flip
Flip order of elements

Description

This function accepts fi objects as inputs.

Refer to the MATLAB flip reference page for more information.



3 Functions — Alphabetical List

3-398

fliplr
Flip matrix left to right

Description

This function accepts fi objects as inputs.

Refer to the MATLAB fliplr reference page for more information.



 flipud

3-399

flipud
Flip matrix up to down

Description

This function accepts fi objects as inputs.

Refer to the MATLAB flipud reference page for more information.



3 Functions — Alphabetical List

3-400

floor
Round toward negative infinity

Syntax

y = floor(a)

Description

y = floor(a) rounds fi object a to the nearest integer in the direction of negative
infinity and returns the result in fi object y.

y and a have the same fimath object and DataType property.

When the DataType property of a is single, double, or boolean, the numerictype of
y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer, and the
numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0, its sign is the
same as that of a, and its word length is the difference between the word length and
the fraction length of a. If a is signed, then the minimum word length of y is 2. If a is
unsigned, then the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded independently.

floor does not support fi objects with nontrivial slope and bias scaling. Slope and bias
scaling is trivial when the slope is an integer power of 2 and the bias is 0.

Examples

Example 1

The following example demonstrates how the floor function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 3.



 floor

3-401

a = fi(pi, 1, 8, 3) 

a =

 

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

y = floor(a) 

y =

 

     3

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 5

        FractionLength: 0

Example 2

The following example demonstrates how the floor function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12) 

a =

 

    0.0249

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 12

y = floor(a) 

y =

 

     0



3 Functions — Alphabetical List

3-402

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 2

        FractionLength: 0

Example 3

The functions ceil, fix, and floor differ in the way they round fi objects:

• The ceil function rounds values to the nearest integer toward positive infinity
• The fix function rounds values toward zero
• The floor function rounds values to the nearest integer toward negative infinity

The following table illustrates these differences for a given fi object a.

a ceil(a) fix(a) floor(a)

– 2.5 –2 –2 –3
–1.75 –1 –1 –2
–1.25 –1 –1 –2
–0.5 0 0 –1
0.5 1 0 0
1.25 2 1 1
1.75 2 1 1
2.5 3 2 2

See Also
ceil | convergent | fix | nearest | round



 for

3-403

for
Execute statements specified number of times

Syntax
for index = values

   statements

end

Description

for index = valuesstatements, end executes a group of statements in a loop for a
specified number of times.

If a colon operation with fi objects is used as the index, then the fi objects must be
whole numbers.

Refer to the MATLAB for reference page for more information.

Example

Use fi in a For Loop

Use a fi object as the index of a for-loop.

a = fi(1,0,8,0);

b = fi(2,0,8,0);

c = fi(10,0,8,0);

for x = a:b:c

 x

end



3 Functions — Alphabetical List

3-404

fplot
Plot function between specified limits

Description

This function accepts fi objects as inputs.

Refer to the MATLAB fplot reference page for more information.



 fractionlength

3-405

fractionlength
Fraction length of quantizer object

Syntax

fractionlength(q)

Description

fractionlength(q) returns the fraction length of quantizer object q.

More About

Algorithms

For floating-point quantizer objects, f = w - e - 1, where w is the word length and e is
the exponent length.

For fixed-point quantizer objects, f is part of the format [w f].

See Also
fi | numerictype | quantizer | wordlength



3 Functions — Alphabetical List

3-406

ge
Determine whether real-world value of one fi object is greater than or equal to another

Syntax

c = ge(a,b)

a >= b

Description

c = ge(a,b) is called for the syntax a >= b when a or b is a fi object. a and b must
have the same dimensions unless one is a scalar. A scalar can be compared with another
object of any size.

a >= b does an element-by-element comparison between a and b and returns a matrix of
the same size with elements set to 1 where the relation is true, and 0 where the relation
is false.

See Also
eq | gt | le | lt | ne



 get

3-407

get
Property values of object

Syntax

value = get(o,'propertyname')

structure = get(o)

Description

value = get(o,'propertyname') returns the property value of the property
'propertyname' for the object o. If you replace the string 'propertyname' by a cell
array of a vector of strings containing property names, get returns a cell array of a
vector of corresponding values.

structure = get(o) returns a structure containing the properties and states of object
o.

o can be a fi, fimath, fipref, numerictype, or quantizer object.

See Also
set



3 Functions — Alphabetical List

3-408

getlsb
Least significant bit

Syntax

c = getlsb(a)

Description

c = getlsb(a) returns the value of the least significant bit in a as a u1,0.

a can be a scalar fi object or a vector fi object.

getlsb only supports fi objects with fixed-point data types.

Examples

The following example uses getlsb to find the least significant bit in the fi object a.

a = fi(-26, 1, 6, 0);

c = getlsb(a)

c =

 

     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

You can verify that the least significant bit in the fi object a is 0 by looking at the binary
representation of a.

disp(bin(a))

100110



 getlsb

3-409

See Also
bitand | bitandreduce | bitconcat | bitget | bitor | bitorreduce | bitset |
bitxor | bitxorreduce | getmsb



3 Functions — Alphabetical List

3-410

getmsb
Most significant bit

Syntax

c = getmsb(a)

Description

c = getmsb(a) returns the value of the most significant bit in a as a u1,0.

a can be a scalar fi object or a vector fi object.

getmsb only supports fi objects with fixed-point data types.

Examples

The following example uses getmsb to find the most significant bit in the fi object a.

a = fi(-26, 1, 6, 0);

c = getmsb(a)

c =

 

     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 1

        FractionLength: 0

>> 

You can verify that the most significant bit in the fi object a is 1 by looking at the binary
representation of a.

disp(bin(a))



 getmsb

3-411

100110

See Also
bitand | bitandreduce | bitconcat | bitget | bitor | bitorreduce | bitset |
bitxor | bitxorreduce | getlsb



3 Functions — Alphabetical List

3-412

globalfimath
Configure global fimath and return handle object

Syntax

G = globalfimath

G = globalfimath('PropertyName1',PropertyValue1,...)

G = globalfimath(f)

Description

G = globalfimath returns a handle object to the global fimath. The global fimath has
identical properties to a fimath object but applies globally.

G = globalfimath('PropertyName1',PropertyValue1,...)  sets the global
fimath using the named properties and their corresponding values. Properties that you
do not specify in this syntax are automatically set to that of the current global fimath.

G = globalfimath(f) sets the properties of the global fimath to match those of the
input fimath object f, and returns a handle object to it.

Unless, in a previous release, you used the saveglobalfimathpref function to save
global fimath settings to your MATLAB preferences, the global fimath properties you set
with the globalfimath function apply only to your current MATLAB session. It is best
practice to remove global fimath from the MATLAB preferences so that you start each
MATLAB session using the default fimath settings. To remove the global fimath, use
the removeglobalfimathpref function.

Modifying globalfimath

Use the globalfimath function to set, change, and reset the global fimath.

Create a fimath object and use it as the global fimath.

G = globalfimath('RoundMode','Floor','OverflowMode','Wrap')



 globalfimath

3-413

 

G =

 

        RoundingMethod: Floor

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

Create another fimath object using the new default.

F1 = fimath

 

F1 =

 

        RoundingMethod: Floor

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

Create a fi object, A, associated with the global fimath.

A = fi(pi)

A = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

Now set the "SumMode" property of the global fimath to "KeepMSB" and retain all the
other property values of the current global fimath.

G = globalfimath('SumMode','KeepMSB')

 

G =

 



3 Functions — Alphabetical List

3-414

        RoundingMethod: Floor

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: KeepMSB

         SumWordLength: 32

         CastBeforeSum: true

Change the global fimath by directly interacting with the handle object G.

G.ProductMode = 'SpecifyPrecision'

 

G =

 

        RoundingMethod: Floor

        OverflowAction: Wrap

           ProductMode: SpecifyPrecision

     ProductWordLength: 32

 ProductFractionLength: 30

               SumMode: KeepMSB

         SumWordLength: 32

         CastBeforeSum: true

Reset the global fimath to the factory default by calling the reset method on G. This is
equivalent to using the resetglobalfimath function.

reset(G);

G

 

G =

 

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: FullPrecision

Tips

If you always use the same fimath settings and you are not sharing code with other
people, using the globalfimath function is a quick, convenient method to configure



 globalfimath

3-415

these settings. However, if you share the code with other people or if you use the
fiaccel function to accelerate the algorithm or you generate C code for your algorithm,
consider the following alternatives.

Goal Issue Using globalfimath Solution

Share code If you share code with
someone who is using
different global fimath
settings, they might see
different results.

Separate the fimath
properties from your
algorithm by using types
tables. For more information,
see “Separate Data Type
Definitions from Algorithm”.

Accelerate your algorithm
using fiaccel or generate
C code from your MATLAB
algorithm using codegen

You cannot use
globalfimath within
that algorithm. If you
generate code with one
globalfimath setting
and run it with a different
globalfimath setting,
results might vary. For
more information, see
Specifying Default fimath
Values for MEX Functions.

Use types tables in the
algorithm from which you
want to generate code. This
insulates you from the global
settings and makes the
code portable. For more
information, see “Separate
Data Type Definitions from
Algorithm”.

See Also
fimath | codegen | fiaccel | removeglobalfimathpref | resetglobalfimath



3 Functions — Alphabetical List

3-416

gplot
Plot set of nodes using adjacency matrix

Description

This function accepts fi objects as inputs.

Refer to the MATLAB gplot reference page for more information.



 gt

3-417

gt
Determine whether real-world value of one fi object is greater than another

Syntax

c = gt(a,b)

a > b

Description

c = gt(a,b) is called for the syntax a > b when a or b is a fi object. a and b must
have the same dimensions unless one is a scalar. A scalar can be compared with another
object of any size.

a > b does an element-by-element comparison between a and b and returns a matrix of
the same size with elements set to 1 where the relation is true, and 0 where the relation
is false.

See Also
eq | ge | le | lt | ne



3 Functions — Alphabetical List

3-418

hankel
Hankel matrix

Description

This function accepts fi objects as inputs.

Refer to the MATLAB hankel reference page for more information.



 hex

3-419

hex
Hexadecimal representation of stored integer of fi object

Syntax

hex(a)

Description

hex(a) returns the stored integer of fi object a in hexadecimal format as a string.
hex(a) is equivalent to a.hex.

Fixed-point numbers can be represented as

real world value stored integerfraction length
- = ¥

-
2

or, equivalently as

real world value slope stored integer bias- = ¥ +( )

The stored integer is the raw binary number, in which the binary point is assumed to be
at the far right of the word.

Examples

Viewing fi Objects in Hexadecimal Format

The following code

a = fi([-1 1],1,8,7);

y = hex(a)

z = a.hex

returns



3 Functions — Alphabetical List

3-420

y =

  80   7f

z =

  80   7f

Writing Hex Data to a File

The following example shows how to write hex data from the MATLAB workspace into a
text file.

First, define your data and create a writable text file called hexdata.txt:

x = (0:15)'/16;

a = fi(x,0,16,16);

h = fopen('hexdata.txt','w');

Use the fprintf function to write your data to the hexdata.txt file:

for k=1:length(a)

    fprintf(h,'%s\n',hex(a(k)));

end

fclose(h);

To see the contents of the file you created, use the type function:

type hexdata.txt 

MATLAB returns:

0000

1000

2000

3000

4000

5000

6000

7000

8000

9000

a000

b000



 hex

3-421

c000

d000

e000

f000

Reading Hex Data from a File

The following example shows how to read hex data from a text file back into the
MATLAB workspace.

Open hexdata.txt for reading and read its contents into a workspace variable:

h = fopen('hexdata.txt','r');

nextline = '';

str='';

while ischar(nextline)

    nextline = fgetl(h);

    if ischar(nextline)

        str = [str;nextline];

    end

end

Create a fi object with the correct scaling and assign it the hex values stored in the str
variable:

b = fi([],0,16,16);

b.hex = str 

b =

         0

    0.0625

    0.1250

    0.1875

    0.2500

    0.3125

    0.3750

    0.4375

    0.5000

    0.5625

    0.6250

    0.6875

    0.7500

    0.8125

    0.8750



3 Functions — Alphabetical List

3-422

    0.9375

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 16

        FractionLength: 16

See Also
bin | dec | storedInteger | oct



 hex2num

3-423

hex2num
Convert hexadecimal string to number using quantizer object

Syntax

x = hex2num(q,h)

[x1,x2,...] = hex2num(q,h1,h2,...)

Description

x = hex2num(q,h) converts hexadecimal string h to numeric matrix x. The attributes
of the numbers in x are specified by quantizer object q. When h is a cell array
containing hexadecimal strings, hex2num returns x as a cell array of the same
dimension containing numbers. For fixed-point hexadecimal strings, hex2num uses
two's complement representation. For floating-point strings, the representation is IEEE
Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number, the fixed-
point conversion zero-fills on the left. Floating-point conversion zero-fills on the right.

[x1,x2,...] = hex2num(q,h1,h2,...) converts hexadecimal strings h1, h2,... to
numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction that num2hex
returns the hexadecimal strings in a column.

Examples

To create all the 4-bit fixed-point two's complement numbers in fractional form, use the
following code.

q = quantizer([4 3]);

h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];

x = hex2num(q,h)

x =



3 Functions — Alphabetical List

3-424

    0.8750    0.3750   -0.1250   -0.6250

    0.7500    0.2500   -0.2500   -0.7500

    0.6250    0.1250   -0.3750   -0.8750

    0.5000         0   -0.5000   -1.0000

See Also
bin2num | num2bin | num2hex | num2int



 hist

3-425

hist
Create histogram plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB hist reference page for more information.



3 Functions — Alphabetical List

3-426

histc
Histogram count

Description

This function accepts fi objects as inputs.

Refer to the MATLAB histc reference page for more information.



 horzcat

3-427

horzcat
Horizontally concatenate multiple fi objects

Syntax
c = horzcat(a,b,...)

[a, b, ...]

Description

c = horzcat(a,b,...) is called for the syntax [a, b, ...] when any of a, b, ... , is a
fi object.

[a b, ...] or [a,b, ...] is the horizontal concatenation of matrices a and b. a and
b must have the same number of rows. Any number of matrices can be concatenated
within one pair of brackets. N-D arrays are horizontally concatenated along the second
dimension. The first and remaining dimensions must match.

Horizontal and vertical concatenation can be combined together as in [1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of rows of b, and if the
number of columns of a plus the number of columns of b equals the number of columns of
c.

The matrices in a concatenation expression can themselves be formed via a concatenation
as in [a b;[c d]].

Note The fimath and numerictype properties of a concatenated matrix of fi objects c
are taken from the leftmost fi object in the list (a,b,...).

See Also
vertcat



3 Functions — Alphabetical List

3-428

imag
Imaginary part of complex number

Description

This function accepts fi objects as inputs.

Refer to the MATLAB imag reference page for more information.



 innerprodintbits

3-429

innerprodintbits
Number of integer bits needed for fixed-point inner product

Syntax

innerprodintbits(a,b)

Description

innerprodintbits(a,b) computes the minimum number of integer bits necessary
in the inner product of a'*b to guarantee that no overflows occur and to preserve best
precision.

• a and b are fi vectors.
• The values of a are known.
• Only the numeric type of b is relevant. The values of b are ignored.

Examples

The primary use of this function is to determine the number of integer bits necessary
in the output Y of an FIR filter that computes the inner product between constant
coefficient row vector B and state column vector Z. For example,
      for k=1:length(X);

        Z = [X(k);Z(1:end-1)];

        Y(k) = B * Z;

      end

More About

Algorithms

In general, an inner product grows log2(n) bits for vectors of length n. However, in the
case of this function the vector a is known and its values do not change. This knowledge



3 Functions — Alphabetical List

3-430

is used to compute the smallest number of integer bits that are necessary in the output to
guarantee that no overflow will occur.

The largest gain occurs when the vector b has the same sign as the constant vector
a. Therefore, the largest gain due to the vector a is a*sign(a'), which is equal to
sum(abs(a)).

The overall number of integer bits necessary to guarantee that no overflow occurs in the
inner product is computed by:
n = ceil(log2(sum(abs(a)))) + number of integer bits in b + 1 sign bit

The extra sign bit is only added if both a and b are signed and b attains its minimum.
This prevents overflow in the event of (-1)*(-1).



 int8

3-431

int8
Convert fi object to signed 8-bit integer

Syntax

c = int8(a)

Description

c = int8(a) returns the built-in int8 value of fi object a, based on its real world
value. If necessary, the data is rounded-to-nearest and saturated to fit into an int8.

Examples

This example shows the int8 values of a fi object.

a = fi([-pi 0.1 pi],1,8);

c = int8(a)

c =

   -3    0    3

See Also
storedInteger | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64



3 Functions — Alphabetical List

3-432

int16
Convert fi object to signed 16-bit integer

Syntax

c = int16(a)

Description

c = int16(a) returns the built-in int16 value of fi object a, based on its real world
value. If necessary, the data is rounded-to-nearest and saturated to fit into an int16.

Examples

This example shows the int16 values of a fi object.

a = fi([-pi 0.1 pi],1,16);

c = int16(a)

c =

   -3    0    3

See Also
storedInteger | int8 | int32 | int64 | uint8 | uint16 | uint32 | uint64



 int32

3-433

int32
Convert fi object to signed 32-bit integer

Syntax

c = int32(a)

Description

c = int32(a) returns the built-in int32 value of fi object a, based on its real world
value. If necessary, the data is rounded-to-nearest and saturated to fit into an int32.

Examples

This example shows the int32 values of a fi object.

a = fi([-pi 0.1 pi],1,32);

c = int32(a)

c =

   -3    0    3

See Also
storedInteger | int8 | int16 | int64 | uint8 | uint16 | uint32 | uint64



3 Functions — Alphabetical List

3-434

int64
Convert fi object to signed 64-bit integer

Syntax

c = int64(a)

Description

c = int64(a) returns the built-in int64 value of fi object a, based on its real world
value. If necessary, the data is rounded-to-nearest and saturated to fit into an int64.

Examples

This example shows the int64 values of a fi object.

a = fi([-pi 0.1 pi],1,64);

c = int64(a)

c =

   -3    0    3

See Also
storedInteger | int8 | int16 | int32 | uint8 | uint16 | uint32 | uint64



 intmax

3-435

intmax
Largest positive stored integer value representable by numerictype of fi object

Syntax

x = intmax(a)

Description

x = intmax(a) returns the largest positive stored integer value representable by the
numerictype of a.

Examples
a = fi(pi, true, 16, 12);

x = intmax(a)

x = 

       32767

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 0

See Also
eps | intmin | lowerbound | lsb | range | realmax | realmin | stripscaling |
upperbound



3 Functions — Alphabetical List

3-436

intmin
Smallest stored integer value representable by numerictype of fi object

Syntax

x = intmin(a)

Description

x = intmin(a) returns the smallest stored integer value representable by the
numerictype of a.

Examples
a = fi(pi, true, 16, 12);

x = intmin(a)

x =

 

      -32768

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 0

See Also
eps | intmax | lowerbound | lsb | range | realmax | realmin | stripscaling |
upperbound



 ipermute

3-437

ipermute
Inverse permute dimensions of multidimensional array

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ipermute reference page for more information.



3 Functions — Alphabetical List

3-438

isboolean
Determine whether input is Boolean

Syntax

y = isboolean(a)

y = isboolean(T)

Description

y = isboolean(a) returns 1 when the DataType property of fi object a is boolean,
and 0 otherwise.

y = isboolean(T) returns 1 when the DataType property of numerictype object T is
boolean, and 0 otherwise.

See Also
isdouble | isfixed | isfloat | isscaleddouble | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle



 iscolumn

3-439

iscolumn
Determine whether fi object is column vector

Syntax

y = iscolumn(a)

Description

y = iscolumn(a) returns 1 if the fi object a is a column vector, and 0 otherwise.

See Also
isrow



3 Functions — Alphabetical List

3-440

isdouble
Determine whether input is double-precision data type

Syntax

y = isdouble(a)

y = isdouble(T)

Description

y = isdouble(a) returns 1 when the DataType property of fi object a is double, and
0 otherwise.

y = isdouble(T) returns 1 when the DataType property of numerictype object T is
double, and 0 otherwise.

See Also
isboolean | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | isscalingunspecified |
issingle



 isempty

3-441

isempty
Determine whether array is empty

Description

Refer to the MATLAB isempty reference page for more information.



3 Functions — Alphabetical List

3-442

isequal
Determine whether real-world values of two fi objects are equal, or determine whether
properties of two fimath, numerictype, or quantizer objects are equal

Syntax

y = isequal(a,b,...)

y = isequal(F,G,...)

y = isequal(T,U,...)

y = isequal(q,r,...)

Description

y = isequal(a,b,...) returns 1 if all the fi object inputs have the same real-world
value. Otherwise, the function returns 0.

y = isequal(F,G,...) returns 1 if all the fimath object inputs have the same
properties. Otherwise, the function returns 0.

y = isequal(T,U,...) returns 1 if all the numerictype object inputs have the same
properties. Otherwise, the function returns 0.

y = isequal(q,r,...) returns 1 if all the quantizer object inputs have the same
properties. Otherwise, the function returns 0.

See Also
eq | fi | fimath | ispropequal | numerictype | quantizer



 isequivalent

3-443

isequivalent
Determine if two numerictype objects have equivalent properties

Syntax

y = isequivalent (T1, T2)

Description

y = isequivalent (T1, T2) determines whether the numerictype object
inputs have equivalent properties and returns a logical 1 (true) or 0 (false). Two
numerictype objects are equivalent if they describe the same data type.

Examples

Compare two numerictype objects

Use isequivalent to determine if two numerictype objects have the same data type.

T1 = numerictype(1, 16, 2^-12, 0)

T1 =

 

          DataTypeMode: Fixed-point: slope and bias scaling

            Signedness: Signed

            WordLength: 16

                 Slope: 2^-12

                  Bias: 0

T2 = numerictype(1, 16, 12)

T2 =

 

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed



3 Functions — Alphabetical List

3-444

            WordLength: 16

        FractionLength: 12

isequivalent(T1,T2)

ans =

     1

Although the Data Type Mode is different for T1 and T2, the function returns 1 (true)
because the two objects have the same data type.

Input Arguments

T1, T2 — Inputs to be compared
numerictype objects

Inputs to be compared, specified as numerictype objects.

See Also
eq | isequal | ispropequal



 isfi

3-445

isfi
Determine whether variable is fi object

Syntax

y = isfi(a)

Description

y = isfi(a) returns 1 if a is a fi object, and 0 otherwise.

See Also
fi | isfimath | isfipref | isnumerictype | isquantizer



3 Functions — Alphabetical List

3-446

isfimath
Determine whether variable is fimath object

Syntax

y = isfimath(F)

Description

y = isfimath(F) returns 1 if F is a fimath object, and 0 otherwise.

See Also
fimath | isfi | isfipref | isnumerictype | isquantizer



 isfimathlocal

3-447

isfimathlocal
Determine whether fi object has local fimath

Syntax

y = isfimathlocal(a)

Description

y = isfimathlocal(a) returns 1 if the fi object a has a local fimath object, and 0 if
a does not have a local fimath.

See Also
fimath | isfi | isfipref | isnumerictype | isquantizer | isfimathlocal |
removefimath | sfi | ufi



3 Functions — Alphabetical List

3-448

isfinite
Determine whether array elements are finite

Description

Refer to the MATLAB isfinite reference page for more information.



 isfipref

3-449

isfipref
Determine whether input is fipref object

Syntax

y = isfipref(P)

Description

y = isfipref(P) returns 1 if P is a fipref object, and 0 otherwise.

See Also
fipref | isfi | isfimath | isnumerictype | isquantizer



3 Functions — Alphabetical List

3-450

isfixed
Determine whether input is fixed-point data type

Syntax

y = isfixed(a)

y = isfixed(T)

y = isfixed(q)

Description

y = isfixed(a) returns 1 when the DataType property of fi object a is Fixed, and 0
otherwise.

y = isfixed(T) returns 1 when the DataType property of numerictype object T is
Fixed, and 0 otherwise.

y = isfixed(q) returns 1 when q is a fixed-point quantizer, and 0 otherwise.

See Also
isboolean | isdouble | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | isscalingunspecified |
issingle



 isfloat

3-451

isfloat
Determine whether input is floating-point data type

Syntax

y = isfloat(a)

y = isfloat(T)

y = isfloat(q)

Description

y = isfloat(a) returns 1 when the DataType property of fi object a is single or
double, and 0 otherwise.

y = isfloat(T) returns 1 when the DataType property of numerictype object T is
single or double, and 0 otherwise.

y = isfloat(q) returns 1 when q is a floating-point quantizer, and 0 otherwise.

See Also
isboolean | isdouble | isfixed | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | isscalingunspecified |
issingle



3 Functions — Alphabetical List

3-452

isinf
Determine whether array elements are infinite

Description

Refer to the MATLAB isinf reference page for more information.



 isnan

3-453

isnan
Determine whether array elements are NaN

Description

Refer to the MATLAB isnan reference page for more information.



3 Functions — Alphabetical List

3-454

isnumeric
Determine whether input is numeric array

Description

Refer to the MATLAB isnumeric reference page for more information.



 isnumerictype

3-455

isnumerictype
Determine whether input is numerictype object

Syntax

y = isnumerictype(T)

Description

y = isnumerictype(T) returns 1 if T is a numerictype object, and 0 otherwise.

See Also
isfi | isfimath | isfipref | isquantizer | numerictype



3 Functions — Alphabetical List

3-456

isobject
Determine whether input is MATLAB object

Description

Refer to the MATLAB isobject reference page for more information.



 ispropequal

3-457

ispropequal
Determine whether properties of two fi objects are equal

Syntax

y = ispropequal(a,b,...)

Description

y = ispropequal(a,b,...) returns 1 if all the inputs are fi objects and all the
inputs have the same properties. Otherwise, the function returns 0.

To compare the real-world values of two fi objects a and b, use a == b or
isequal(a,b).

See Also
fi | isequal



3 Functions — Alphabetical List

3-458

isquantizer
Determine whether input is quantizer object

Syntax

y = isquantizer(q)

Description

y = isquantizer(q) returns 1 when q is a quantizer object, and 0 otherwise.

See Also
quantizer | isfi | isfimath | isfipref | isnumerictype



 isreal

3-459

isreal
Determine whether array elements are real

Description

Refer to the MATLAB isreal reference page for more information.



3 Functions — Alphabetical List

3-460

isrow
Determine whether fi object is row vector

Syntax

y = isrow(a)

Description

y = isrow(a) returns 1 if the fi object a is a row vector, and 0 otherwise.

See Also
iscolumn



 isscalar

3-461

isscalar
Determine whether input is scalar

Description

Refer to the MATLAB isscalar reference page for more information.



3 Functions — Alphabetical List

3-462

isscaleddouble
Determine whether input is scaled double data type

Syntax

y = isscaleddouble(a)

y = isscaleddouble(T)

Description

y = isscaleddouble(a) returns 1 when the DataType property of fi object a is
ScaledDouble, and 0 otherwise.

y = isscaleddouble(T) returns 1 when the DataType property of numerictype
object T is ScaledDouble, and 0 otherwise.

See Also
isboolean | isdouble | isfixed | isfloat | isscaledtype |
isscalingbinarypoint | isscalingslopebias | isscalingunspecified |
issingle



 isscaledtype

3-463

isscaledtype
Determine whether input is fixed-point or scaled double data type

Syntax

y = isscaledtype(a)

y = isscaledtype(T)

Description

y = isscaledtype(a) returns 1 when the DataType property of fi object a is Fixed
or ScaledDouble, and 0 otherwise.

y = isscaledtype(T) returns 1 when the DataType property of numerictype object
T is Fixed or ScaledDouble, and 0 otherwise.

See Also
isboolean | isdouble | isfixed | isfloat | numerictype | isscaleddouble
| isscalingbinarypoint | isscalingslopebias | isscalingunspecified |
issingle



3 Functions — Alphabetical List

3-464

isscalingbinarypoint
Determine whether input has binary point scaling

Syntax

y = isscalingbinarypoint(a)

y = isscalingbinarypoint(T)

Description

y = isscalingbinarypoint(a) returns 1 when the fi object a has binary point
scaling or trivial slope and bias scaling. Otherwise, the function returns 0. Slope and bias
scaling is trivial when the slope is an integer power of two and the bias is zero.

y = isscalingbinarypoint(T) returns 1 when the numerictype object T has binary
point scaling or trivial slope and bias scaling. Otherwise, the function returns 0. Slope
and bias scaling is trivial when the slope is an integer power of two and the bias is zero.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingslopebias | isscalingunspecified | issingle



 isscalingslopebias

3-465

isscalingslopebias
Determine whether input has nontrivial slope and bias scaling

Syntax

y = isscalingslopebias(a)

y = isscalingslopebias(T)

Description

y = isscalingslopebias(a) returns 1 when the fi object a has nontrivial slope
and bias scaling, and 0 otherwise. Slope and bias scaling is trivial when the slope is an
integer power of two and the bias is zero.

y = isscalingslopebias(T) returns 1 when the numerictype object T has
nontrivial slope and bias scaling, and 0 otherwise. Slope and bias scaling is trivial when
the slope is an integer power of two and the bias is zero.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingunspecified | issingle



3 Functions — Alphabetical List

3-466

isscalingunspecified
Determine whether input has unspecified scaling

Syntax

y = isscalingunspecified(a)

y = isscalingunspecified(T)

Description

y = isscalingunspecified(a) returns 1 if fi object a has a fixed-point or scaled
double data type and its scaling has not been specified.

y = isscalingunspecified(T) returns 1 if numerictype object T has a fixed-point
or scaled double data type and its scaling has not been specified.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | issingle



 issigned

3-467

issigned
Determine whether fi object is signed

Syntax

y = issigned(a)

Description

y = issigned(a) returns 1 if the fi object a is signed, and 0 if it is unsigned.



3 Functions — Alphabetical List

3-468

issingle
Determine whether input is single-precision data type

Syntax

y = issingle(a)

y = issingle(T)

Description

y = issingle(a) returns 1 when the DataType property of fi object a is single, and
0 otherwise.

y = issingle(T) returns 1 when the DataType property of numerictype object T is
single, and 0 otherwise.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | isscalingunspecified



 isslopebiasscaled

3-469

isslopebiasscaled
Determine whether numerictype object has nontrivial slope and bias

Syntax

y = isslopebiasscaled(T)

Description

y = isslopebiasscaled(T) returns 1 when numerictype object T has nontrivial
slope and bias scaling, and 0 otherwise. Slope and bias scaling is trivial when the slope is
an integer power of 2, and the bias is 0.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
issingle | numerictype



3 Functions — Alphabetical List

3-470

isvector
Determine whether input is vector

Description

Refer to the MATLAB isvector reference page for more information.



 le

3-471

le
Determine whether real-world value of fi object is less than or equal to another

Syntax

c = le(a,b)

a <= b

Description

c = le(a,b) is called for the syntax a <= b when a or b is a fi object. a and b must
have the same dimensions unless one is a scalar. A scalar can be compared with another
object of any size.

a <= b does an element-by-element comparison between a and b and returns a matrix of
the same size with elements set to 1 where the relation is true, and 0 where the relation
is false.

See Also
eq | ge | gt | lt | ne



3 Functions — Alphabetical List

3-472

length
Vector length

Description

This function accepts fi objects as inputs.

Refer to the MATLAB length reference page for more information.



 line

3-473

line
Create line object

Description

This function accepts fi objects as inputs.

Refer to the MATLAB line reference page for more information.



3 Functions — Alphabetical List

3-474

logical
Convert numeric values to logical

Description

This function accepts fi objects as inputs.

Refer to the MATLAB logical reference page for more information.



 loglog

3-475

loglog
Create log-log scale plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB loglog reference page for more information.



3 Functions — Alphabetical List

3-476

logreport
Quantization report

Syntax

logreport(a)

logreport(a, b, ...)

Description

logreport(a) displays the minlog, maxlog, lowerbound, upperbound, noverflows,
and nunderflows for the fi object a.

logreport(a, b, ...) displays the report for each fi object a, b, ... .

Examples

The following example produces a logreport for fi objects a and b:
fipref('LoggingMode','On');

a = fi(pi);

b = fi(randn(10),1,8,7);

Warning: 27 overflows occurred in the fi assignment operation.

Warning: 1 underflow occurred in the fi assignment operation.

logreport(a,b)       

       minlog      maxlog  lowerbound    upperbound   noverflows   nunderflows

 a   3.141602    3.141602          -4      3.999878            0             0

 b         -1   0.9921875          -1     0.9921875           27             1

See Also
fipref | quantize | quantizer



 lowerbound

3-477

lowerbound
Lower bound of range of fi object

Syntax

lowerbound(a)

Description

lowerbound(a) returns the lower bound of the range of fi object a. If
L=lowerbound(a) and U=upperbound(a), then [L,U]=range(a).

See Also
eps | intmax | intmin | lsb | range | realmax | realmin | upperbound



3 Functions — Alphabetical List

3-478

lsb
Scaling of least significant bit of fi object, or value of least significant bit of quantizer
object

Syntax

b = lsb(a)

p = lsb(q)

Description

b = lsb(a) returns the scaling of the least significant bit of fi object a. The result is
equivalent to the result given by the eps function.

p = lsb(q) returns the quantization level of quantizer object q, or the distance from
1.0 to the next largest floating-point number if q is a floating-point quantizer object.

Examples

This example uses the lsb function to find the value of the least significant bit of the
quantizer object q.

 q = quantizer('fixed',[8 7]);

 p = lsb(q)

p =

    0.0078

See Also
eps | intmax | intmin | lowerbound | quantize | range | realmax | realmin |
upperbound



 lt

3-479

lt
Determine whether real-world value of one fi object is less than another

Syntax

c = lt(a,b)

a < b

Description

c = lt(a,b) is called for the syntax a < b when a or b is a fi object. a and b must
have the same dimensions unless one is a scalar. A scalar can be compared with another
object of any size.

a < b does an element-by-element comparison between a and b and returns a matrix of
the same size with elements set to 1 where the relation is true, and 0 where the relation
is false.

See Also
eq | ge | gt | le | ne



3 Functions — Alphabetical List

3-480

max
Largest element in array of fi objects

Syntax

x = max(a)

x= max(a,[],dim)

[x,y] = max( ___ )

m = max(a,b)

Description

x = max(a) returns the largest elements along different dimensions of fi array a.

If a is a vector, max(a) returns the largest element in a.

If a is a matrix, max(a) treats the columns of a as vectors, returning a row vector
containing the maximum element from each column.

If a is a multidimensional array, max operates along the first nonsingleton dimension
and returns an array of maximum values.

x= max(a,[],dim) returns the largest elements along dimension dim.

[x,y] = max( ___ ) finds the indices of the maximum values and returns them in
array y, using any of the input arguments in the previous syntaxes. If the largest value
occurs multiple times, the index of the first occurrence is returned.

m = max(a,b) returns an array the same size as a and b with the largest elements
taken from a or b.

Examples

Largest Element in a Vector

Create a fixed-point vector, and return the maximum value from the vector.



 max

3-481

a = fi([1,5,4,9,2],1,16);

x = max(a)

x = 

     9

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

Largest Element of Each Matrix Row

Create a fixed-point matrix.

a = fi(magic(4),1,16)

a = 

    16     2     3    13

     5    11    10     8

     9     7     6    12

     4    14    15     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 10

Find the largest element of each row by finding the maximum values along the second
dimension.

x = max(a,[],2)

x = 

    16

    11

    12

    15

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16



3 Functions — Alphabetical List

3-482

        FractionLength: 10

The output vector, x, is a column vector that contains the largest element of each row.

Largest Element of Each Matrix Column

Create a fixed-point matrix.

a = fi(magic(4),1,16)

a = 

    16     2     3    13

     5    11    10     8

     9     7     6    12

     4    14    15     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 10

Find the largest element of each column.

x = max(a)

x = 

    16    14    15    13

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 10

The output, x, is a row vector that contains the largest elements from each column of a.

Find the index of each of the maximum elements.

[x,y] = max(a)

x = 

    16    14    15    13

          DataTypeMode: Fixed-point: binary point scaling



 max

3-483

            Signedness: Signed

            WordLength: 16

        FractionLength: 10

y =

     1     4     4     1

Vector y contains the indices to the minimum elements in x.

Maximum Elements from Two Arrays

Create two fixed-point arrays of the same size.

a = fi([2.3,4.7,6;0,7,9.23],1,16);

b = fi([9.8,3.21,1.6;pi,2.3,1],1,16);

Find the largest elements from a or b.

m = max(a,b)

m = 

    9.7998    4.7002    6.0000

    3.1416    7.0000    9.2300

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

m contains the largest elements from each pair of corresponding elements in a and b.

Largest Element of a Complex Vector

Create a complex fixed-point vector, a.

a = fi([1+2i,3+6i,6+3i,2-4i],1,16)

a = 

   1.0000 + 2.0000i   3.0000 + 6.0000i   6.0000 + 3.0000i   2.0000 - 4.0000i

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed



3 Functions — Alphabetical List

3-484

            WordLength: 16

        FractionLength: 12

The function finds the largest element of a complex vector by taking the element with the
largest magnitude.

abs(a)

ans = 

    2.2361    6.7083    6.7083    4.4722

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 12

In vector a, the largest elements, at position 2 and 3, have a magnitude of 6.7083. The
max function returns the largest element in output x and the index of that element in
output y.

[x,y] = max(a)

x = 

   3.0000 + 6.0000i

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 12

y =

     2

Although the elements at index 2 and 3 have the same magnitude, the index of the first
occurrence of that value is always returned.

Input Arguments

a — Input fi array
fi object | numeric variable



 max

3-485

fi input array, specified as a scalar, vector, matrix, or multidimensional array. The
dimensions of a and b must match unless one is a scalar.

The max function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Complex Number Support: Yes

b — Second input fi array
fi object | numeric variable

Second fi input array, specified as a scalar, vector, matrix, or multidimensional array.
The dimensions of a and b must match unless one is a scalar.

The max function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Complex Number Support: Yes

dim — dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi
object. If you do not specify a value, the default value is the first array dimension whose
size does not equal 1.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output Arguments

x — Maximum values
scalar | vector | matrix | multidimensional array

Maximum values, returned as a scalar, vector, matrix, or multidimensional array. x
always has the same data type as the input.



3 Functions — Alphabetical List

3-486

y — Index of maximum values
scalar | vector | matrix | multidimensional array

Indices of the maximum values in array x, returned as a scalar, vector, matrix, or
multidimensional array. If the largest value occurs more than once, then y contains the
index to the first occurrence of the value. y is always of data type double.

m — Array of maximum values
scalar | vector | matrix | multidimensional array

Array of maximum values of a and b, returned as a scalar, vector, matrix, or
multidimensional array.

More About

Algorithms

When a or b is complex, the max function returns the elements with the largest
magnitude. If two magnitudes are equal, then max returns the first value. This behavior
differs from how the builtin max function resolves ties between complex numbers.

See Also
mean | median | min | sort



 maxlog

3-487

maxlog
Log maximums

Syntax

y = maxlog(a)

y = maxlog(q)

Description

y = maxlog(a) returns the largest real-world value of fi object a since logging was
turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging
for a fi object using the resetlog function.

y = maxlog(q) is the maximum value after quantization during a call to
quantize(q,...) for quantizer object q. This value is the maximum value
encountered over successive calls to quantize since logging was turned on, and is reset
with resetlog(q). maxlog(q) is equivalent to get(q,'maxlog') and q.maxlog.

Examples

Example 1: Using maxlog with fi objects

P = fipref('LoggingMode','on');

format long g

a = fi([-1.5 eps 0.5], true, 16, 15);

a(1) = 3.0;

maxlog(a)

Warning: 1 overflow occurred in the fi 

assignment operation. 

> In embedded.fi.fi at 510

  In fi at 220



3 Functions — Alphabetical List

3-488

Warning: 1 underflow occurred in the fi

 assignment operation. 

> In embedded.fi.fi at 510

  In fi at 220

Warning: 1 overflow occurred in the fi 

assignment operation. 

ans =

         0.999969482421875

The largest value maxlog can return is the maximum representable value of its input. In
this example, a is a signed fi object with word length 16, fraction length 15 and range:
-1 ≤ x ≤ 1 – 2-15

You can obtain the numerical range of any fi object a using the range function:

format long g

r = range(a) 

r =

 

                        -1         0.999969482421875

Example 2: Using maxlog with quantizer objects

q = quantizer;

warning on

format long g

x = [-20:10];

y = quantize(q,x);

maxlog(q)

Warning: 29 overflows.

> In embedded.quantizer.quantize at 74

ans =

  .999969482421875

The largest value maxlog can return is the maximum representable value of its input.
You can obtain the range of x after quantization using the range function:



 maxlog

3-489

format long g

r = range(q)

r =

                        -1         0.999969482421875

See Also
fipref | minlog | noverflows | nunderflows | reset | resetlog



3 Functions — Alphabetical List

3-490

mean
Average or mean value of fixed-point array

Syntax

c = mean(a)

c = mean(a,dim)

Description

c = mean(a) computes the mean value of the fixed-point array a along its first
nonsingleton dimension.

c = mean(a,dim) computes the mean value of the fixed-point array a along dimension
dim. dim must be a positive, real-valued integer with a power-of-two slope and a bias of
0.

The input to the mean function must be a real-valued fixed-point array.

The fixed-point output array c has the same numerictype properties as the fixed-
point input array a. If the input, a, has a local fimath, then it is used for intermediate
calculations. The output, c, is always associated with the default fimath.

When a is an empty fixed-point array (value = []), the value of the output array is zero.

Examples

Compute the mean value along the first dimension (rows) of a fixed-point array.

x = fi([0 1 2; 3 4 5], 1, 32);

% x is a signed FI object with a 32-bit word length 

% and a best-precision fraction length of 28-bits

mx1 = mean(x,1)

Compute the mean value along the second dimension (columns) of a fixed-point array.

x = fi([0 1 2; 3 4 5], 1, 32);



 mean

3-491

% x is a signed FI object with a 32-bit word length 

% and a best-precision fraction length of 28 bits

mx2 = mean(x,2)

More About

Algorithms

The general equation for computing the mean of an array a, across dimension dim is:

sum(a,dim)/size(a,dim)

Because size(a,dim) is always a positive integer, the algorithm casts size(a,dim) to
an unsigned 32-bit fi object with a fraction length of zero (SizeA). The algorithm then
computes the mean of a according to the following equation, where Tx represents the
numerictype properties of the fixed-point input array a:

c = Tx.divide(sum(a,dim), SizeA)

See Also
max | median | min



3 Functions — Alphabetical List

3-492

median
Median value of fixed-point array

Syntax

c = median(a)

c = median(a,dim)

Description

c = median(a) computes the median value of the fixed-point array a along its first
nonsingleton dimension.

c = median(a,dim) computes the median value of the fixed-point array a along
dimension dim. dim must be a positive, real-valued integer with a power-of-two slope and
a bias of 0.

The input to the median function must be a real-valued fixed-point array.

The fixed-point output array c has the same numerictype properties as the fixed-
point input array a. If the input, a, has a local fimath, then it is used for intermediate
calculations. The output, c, is always associated with the default fimath.

When a is an empty fixed-point array (value = []), the value of the output array is zero.

Examples

Compute the median value along the first dimension of a fixed-point array.

x = fi([0 1 2; 3 4 5; 7 2 2; 6 4 9], 1, 32)

% x is a signed FI object with a 32-bit word length

% and a best-precision fraction length of 27 bits

mx1 = median(x,1)

Compute the median value along the second dimension (columns) of a fixed-point array.

x = fi([0 1 2; 3 4 5; 7 2 2; 6 4 9], 1, 32)



 median

3-493

% x is a signed FI object with a 32-bit word length

% and a best-precision fraction length of 27 bits

mx2 = median(x, 2)

See Also
max | mean | min



3 Functions — Alphabetical List

3-494

mesh
Create mesh plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB mesh reference page for more information.



 meshc

3-495

meshc
Create mesh plot with contour plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB meshc reference page for more information.



3 Functions — Alphabetical List

3-496

meshz
Create mesh plot with curtain plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB meshz reference page for more information.



 min

3-497

min
Smallest element in array of fi objects

Syntax

x = min(a)

x= min(a,[],dim)

[x,y] = min( ___ )

m = min(a,b)

Description

x = min(a) returns the smallest elements along different dimensions of fi array a.

If a is a vector, min(a) returns the smallest element in a.

If a is a matrix, min(a) treats the columns of a as vectors, returning a row vector
containing the minimum element from each column.

If a is a multidimensional array, min operates along the first nonsingleton dimension
and returns an array of minimum values.

x= min(a,[],dim) returns the smallest elements along dimension dim.

[x,y] = min( ___ ) finds the indices of the minimum values and returns them in array
y, using any of the input arguments in the previous syntaxes. If the smallest value occurs
multiple times, the index of the first occurrence is returned.

m = min(a,b) returns an array the same size as a and b with the smallest elements
taken from a or b.

Examples

Smallest Element in a Vector

Create a fixed-point vector, and return the minimum value from the vector.



3 Functions — Alphabetical List

3-498

a = fi([1,5,4,9,2],1,16);

x = min(a)

x = 

     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

Minimum Element of Each Matrix Row

Create a matrix of fixed-point values.

a = fi(magic(4),1,16)

a = 

    16     2     3    13

     5    11    10     8

     9     7     6    12

     4    14    15     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 10

Find the smallest element of each row by finding the minimum values along the second
dimension.

x = min(a,[],2)

x = 

     2

     5

     6

     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16



 min

3-499

        FractionLength: 10

The output, x, is a column vector that contains the smallest element of each row of a.

Minimum Element of Each Matrix Column

Create a fixed-point matrix.

a = fi(magic(4),1,16)

a = 

    16     2     3    13

     5    11    10     8

     9     7     6    12

     4    14    15     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 10

Find the smallest element of each column.

x = min(a)

x = 

     4     2     3     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 10

The output, x, is a row vector that contains the smallest element of each column of a.

Find the index of each of the minimum elements.

[x,y] = min(a)

x = 

     4     2     3     1

          DataTypeMode: Fixed-point: binary point scaling



3 Functions — Alphabetical List

3-500

            Signedness: Signed

            WordLength: 16

        FractionLength: 10

y =

     4     1     1     4

Minimum Elements from Two Arrays

Create two fixed-point arrays of the same size.

a = fi([2.3,4.7,6;0,7,9.23],1,16);

b = fi([9.8,3.21,1.6;pi,2.3,1],1,16);

Find the minimum elements from a or b.

m = min(a,b)

m = 

    2.2998    3.2100    1.6001

         0    2.2998    1.0000

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

m contains the smallest elements from each pair of corresponding elements in a and b.

Minimum Element of a Complex Vector

Create a complex fixed-point vector, a.

a = fi([1+2i,2+i,3+8i,9+i],1,8)

a = 

   1.0000 + 2.0000i   2.0000 + 1.0000i   3.0000 + 8.0000i   9.0000 + 1.0000i

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3



 min

3-501

The function finds the smallest element of a complex vector by taking the element with
the smallest magnitude.

abs(a)

ans = 

    2.2500    2.2500    8.5000    9.0000

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

In vector a, the smallest elements, at position 1 and 2, have a magnitude of 2.25. The
min function returns the smallest element in output x, and the index of that element in
output, y.

[x,y] = min(a)

x = 

   1.0000 + 2.0000i

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

y =

     1

Although the elements at index 1 and 2 have the same magnitude, the index of the first
occurrence of that value is always returned.

Input Arguments

a — Input fi array
fi object | numeric variable

fi input array, specified as a scalar, vector, matrix, or multidimensional array. The
dimensions of a and b must match unless one is a scalar.



3 Functions — Alphabetical List

3-502

The min function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Complex Number Support: Yes

b — Second input fi array
fi object | numeric variable

Second fi input array, specified as a scalar, vector, matrix, or multidimensional array.
The dimensions of a and b must match unless one is a scalar.

The min function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Complex Number Support: Yes

dim — dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi
object. If you do not specify a value, the default value is the first array dimension whose
size does not equal 1.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output Arguments

x — Minimum values
scalar | vector | matrix | multidimensional array

Minimum values, returned as a scalar, vector, matrix, or multidimensional array. x
always has the same data type as the input.

y — Index of minimum values
scalar | vector | matrix | multidimensional array



 min

3-503

Indices of the minimum values in array x, returned as a scalar, vector, matrix, or
multidimensional array. If the smallest value occurs more than once, then y contains the
index to the first occurrence of the value. y is always of data type double.

m — Array of minimum values
scalar | vector | matrix | multidimensional array

Array of minimum values of a and b, returned as a scalar, vector, matrix, or
multidimensional array.

More About

Algorithms

When a or b is complex, the min function returns the element with the smallest
magnitude. If two magnitudes are equal, then min returns the first value. This behavior
differs from how the builtin min function resolves ties between complex numbers.

See Also
max | mean | median | sort



3 Functions — Alphabetical List

3-504

minlog
Log minimums

Syntax

y = minlog(a)

y = minlog(q)

Description

y = minlog(a) returns the smallest real-world value of fi object a since logging was
turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging
for a fi object using the resetlog function.

y = minlog(q) is the minimum value after quantization during a call to
quantize(q,...) for quantizer object q. This value is the minimum value
encountered over successive calls to quantize since logging was turned on, and is reset
with resetlog(q). minlog(q) is equivalent to get(q,'minlog') and q.minlog.

Examples

Example 1: Using minlog with fi objects

P = fipref('LoggingMode','on');

a = fi([-1.5 eps 0.5], true, 16, 15);

a(1) = 3.0;

minlog(a)

ans =

     -1

 



 minlog

3-505

The smallest value minlog can return is the minimum representable value of its input.
In this example, a is a signed fi object with word length 16, fraction length 15 and
range:
-1 ≤ x ≤ 1 – 2-15

You can obtain the numerical range of any fi object a using the range function:

format long g

r = range(a) 

r =

 

                        -1         0.999969482421875

Example 2: Using minlog with quantizer objects

q = quantizer;

warning on

x = [-20:10];

y = quantize(q,x);

minlog(q)

Warning: 29 overflows.

> In embedded.quantizer.quantize at 74

ans =

    -1

The smallest value minlog can return is the minimum representable value of its input.
You can obtain the range of x after quantization using the range function:

format long g

r = range(q)

r =

                        -1         0.999969482421875

See Also
fipref | maxlog | noverflows | nunderflows | reset | resetlog



3 Functions — Alphabetical List

3-506

minus
Matrix difference between fi objects

Syntax

minus(a,b)

Description

minus(a,b) is called for the syntax a - b when a or b is an object.

a - b subtracts matrix b from matrix a. a and b must have the same dimensions unless
one is a scalar value (a 1-by-1 matrix). A scalar value can be subtracted from any other
value.

minus does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer
calculations, see “fimath Properties Usage for Fixed-Point Arithmetic” and “fimath
ProductMode and SumMode” in the Fixed-Point Designer User's Guide.

For information about calculations using Fixed-Point Designer software, see the Fixed-
Point Designer documentation.

See Also
mtimes | plus | times | uminus



 mod

3-507

mod

Modulus after division for fi objects

Syntax

M = mod(X,Y)

Description

M = mod(X,Y) if Y ~= 0, returns X-n.*Y, where n = floor(X./Y). The inputs X
and Y must be real arrays of the same size, or either can be a real scalar. For fixed-point
or integer input arguments, the output data type is the aggregate type of both input
signedness, word lengths, and fraction lengths. For fixed-point inputs, the word length
of the internally computed aggregate fixed-point output data type cannot exceed 32 bits.
For floating-point input arguments, the output data type is the same as the inputs.

The mod function ignores and discards any fimath attached to the inputs. The output is
always associated with the default fimath.

Note: The combination of fixed-point and floating-point inputs is not currently supported.

Input Arguments

X

Integer, fixed-point, or floating-point array, or real scalar.

Y

Array of the same size as X, or real scalar.



3 Functions — Alphabetical List

3-508

Output Arguments

M

Result of modulus operation. If both inputs X and Y are floating-point, then the data type
of M is the same as the inputs. If either input X or Y is fixed-point, then the data type of M
is the aggregate numerictype. This value equals that of fixed.aggregateType(X,Y).

Examples

Calculate the mod of two fi objects.

% 7-bit signed fixed-point object

x = fi(-3,1,7,0);

% 15-bit signed fixed-point object

y = fi(2,1,15,0);

M1 = mod(x,y)

M1 =

 

     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 15

        FractionLength: 0

M2 = mod(y,x)

M2 =

 

    -1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 15

        FractionLength: 0

Convert the fi inputs in the previous example to double type, and calculate the mod.

Mf1 = mod(double(x),double(y))

Mf1 =

     1

Mf2 = mod(double(y),double(x))



 mod

3-509

Mf2 =

    -1

See Also
fixed.aggregateType | mod



3 Functions — Alphabetical List

3-510

mpower
Fixed-point matrix power (^)

Syntax

c = mpower(a,k)

c = a^k

Description

c = mpower(a,k) and c = a^k compute matrix power. The exponent k requires a
positive, real-valued integer value.

The fixed-point output array c has the same local fimath as the input a. If a has no local
fimath, the output c also has no local fimath. The matrix power operation is performed
using default fimath settings.

Examples

Compute the power of a 2-dimensional square matrix for exponent values 0, 1, 2, and 3.

x = fi([0 1; 2 4], 1, 32);

px0 = x^0 

px1 = x^1 

px2 = x^2

px3 = x^3

More About

Tips

For more information about the mpower function, see the MATLAB mpower reference
page.



 mpower

3-511

See Also
mpower | power



3 Functions — Alphabetical List

3-512

mpy
Multiply two objects using fimath object

Syntax

c = mpy(F,a,b)

Description

c = mpy(F,a,b) performs elementwise multiplication on a and b using fimath object
F. This is helpful in cases when you want to override the fimath objects of a and b, or if
the fimath properties associated with a and b are different. The output fi object c has
no local fimath.

a and b can both be fi objects with the same dimensions unless one is a scalar. If either
a or b is scalar, then c has the dimensions of the nonscalar object. a and b can also be
doubles, singles, or integers.

Examples

In this example, c is the 40-bit product of a and b with fraction length 30.

a = fi(pi);

b = fi(exp(1));

F = fimath('ProductMode','SpecifyPrecision',...

  'ProductWordLength',40,'ProductFractionLength',30);

c = mpy(F, a, b) 

c =

 

    8.5397

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 40

        FractionLength: 30



 mpy

3-513

More About

Algorithms

c = mpy(F,a,b) is similar to

a.fimath = F;

b.fimath = F;

c = a .* b

c =

    8.5397

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 40

        FractionLength: 30

        RoundingMethod: nearest

        OverflowAction: saturate

           ProductMode: SpecifyPrecision

     ProductWordLength: 40

 ProductFractionLength: 30

               SumMode: FullPrecision

but not identical. When you use mpy, the fimath properties of a and b are not modified,
and the output fi object c has no local fimath. When you use the syntax c = a .* b,
where a and b have their own fimath objects, the output fi object c gets assigned the
same fimath object as inputs a and b. See “fimath Rules for Fixed-Point Arithmetic” in
the Fixed-Point Designer User's Guide for more information.

See Also
add | fi | divide | fimath | mrdivide | numerictype | rdivide | sub | sum



3 Functions — Alphabetical List

3-514

mrdivide
Forward slash (/) or right-matrix division

Syntax

c = mrdivide(a,b)

c = a/b

Description

c = mrdivide(a,b) and c = a/b perform right-matrix division.

When one or both of the inputs is a fi object, the denominator input, b, must be a scalar
and the output fi object c is equivalent to c = rdivide(a,b) or c = a./b (right-
array division).

The numerator input a can be complex, but the denominator input b must always be
real-valued. When the numerator input a is complex, the real and imaginary parts of a
are independently divided by b.

For information on the data type rules used by the mrdivide function, see the rdivide
reference page.

Examples

In this example, you use the forward slash (/) to perform right matrix division on a 3-by-3
magic square of fi objects. Because the numerator input is a fi object, the denominator
input b must be a scalar:

a = fi(magic(3))

b = fi(3, 1, 12, 8)

c = a/b

The mrdivide function outputs a signed 3-by-3 array of fi objects, each of which has a
word length of 16 bits and a fraction length of 3 bits.



 mrdivide

3-515

a =

 

     8     1     6

     3     5     7

     4     9     2

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

b =

 

     3

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 12

        FractionLength: 8

 

c =

 

    2.6250    0.3750    2.0000

    1.0000    1.6250    2.3750

    1.3750    3.0000    0.6250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 3

See Also
add | fi | divide | fimath | numerictype | rdivide | sub | sum



3 Functions — Alphabetical List

3-516

mtimes
Matrix product of fi objects

Syntax

mtimes(a,b)

Description

mtimes(a,b) is called for the syntax a * b when a or b is an object.

a * b is the matrix product of a and b. A scalar value (a 1-by-1 matrix) can multiply any
other value. Otherwise, the number of columns of a must equal the number of rows of b.

mtimes does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer
calculations, see “fimath Properties Usage for Fixed-Point Arithmetic” and “fimath
ProductMode and SumMode” in the Fixed-Point Designer documentation.

For information about calculations using Fixed-Point Designer software, see the Fixed-
Point Designer documentation.

See Also
plus | minus | times | uminus



 ndgrid

3-517

ndgrid
Generate arrays for N-D functions and interpolation

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ndgrid reference page for more information.



3 Functions — Alphabetical List

3-518

ndims
Number of array dimensions

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ndims reference page for more information.



 ne

3-519

ne
Determine whether real-world values of two fi objects are not equal

Syntax

c = ne(a,b)

a ~= b

Description

c = ne(a,b) is called for the syntax a ~= b when a or b is a fi object. a and b must
have the same dimensions unless one is a scalar. A scalar can be compared with another
object of any size.

a ~= b does an element-by-element comparison between a and b and returns a matrix of
the same size with elements set to 1 where the relation is true, and 0 where the relation
is false.

See Also
eq | ge | gt | le | lt



3 Functions — Alphabetical List

3-520

nearest
Round toward nearest integer with ties rounding toward positive infinity

Syntax
y = nearest(a)

Description
y = nearest(a) rounds fi object a to the nearest integer or, in case of a tie, to the
nearest integer in the direction of positive infinity, and returns the result in fi object y.

y and a have the same fimath object and DataType property.

When the DataType property of a is Single, Double, or Boolean, the numerictype of
y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer, and the
numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0, its sign is the
same as that of a, and its word length is the difference between the word length and the
fraction length of a, plus one bit. If a is signed, then the minimum word length of y is 2.
If a is unsigned, then the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded independently.

nearest does not support fi objects with nontrivial slope and bias scaling. Slope and
bias scaling is trivial when the slope is an integer power of 2 and the bias is 0.

Examples

Example 1

The following example demonstrates how the nearest function affects the
numerictype properties of a signed fi object with a word length of 8 and a fraction
length of 3.



 nearest

3-521

a = fi(pi, 1, 8, 3) 

a =

 

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

y = nearest(a) 

y =

 

     3

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 6

        FractionLength: 0

Example 2

The following example demonstrates how the nearest function affects the
numerictype properties of a signed fi object with a word length of 8 and a fraction
length of 12.

a = fi(0.025,1,8,12) 

a =

 

    0.0249

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 12

y = nearest(a) 

y =

 

     0



3 Functions — Alphabetical List

3-522

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 2

        FractionLength: 0

Example 3

The functions convergent, nearest and round differ in the way they treat values
whose least significant digit is 5:

• The convergent function rounds ties to the nearest even integer
• The nearest function rounds ties to the nearest integer toward positive infinity
• The round function rounds ties to the nearest integer with greater absolute value

The following table illustrates these differences for a given fi object a.

a convergent(a) nearest(a) round(a)

–3.5 –4 –3 –4
–2.5 –2 –2 –3
–1.5 –2 –1 –2
–0.5 0 0 –1
0.5 0 1 1
1.5 2 2 2
2.5 2 3 3
3.5 4 4 4

See Also
ceil | convergent | fix | floor | round



 noperations

3-523

noperations
Number of operations

Syntax

noperations(q)

Description

noperations(q) is the number of quantization operations during a call to
quantize(q,...) for quantizer object q. This value accumulates over successive
calls to quantize. You reset the value of noperations to zero by issuing the command
resetlog(q).

Each time any data element is quantized, noperations is incremented by one. The real
and complex parts are counted separately. For example, (complex * complex) counts
four quantization operations for products and two for sum, because(a+bi)*(c+di) =
(a*c - b*d) + (a*d + b*c). In contrast, (real*real) counts one quantization
operation.

In addition, the real and complex parts of the inputs are quantized individually.
As a result, for a complex input of length 204 elements, noperations counts 408
quantizations: 204 for the real part of the input and 204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all expanded from real
values to complex values, with a corresponding increase in the number of quantization
operations recorded by noperations. In concrete terms, (real*real) requires
fewer quantizations than (real*complex) and (complex*complex). Changing
all the values to complex because one is complex, such as the coefficient, makes the
(real*real) into (real*complex), raising noperations count.

See Also
maxlog | minlog



3 Functions — Alphabetical List

3-524

not
Find logical NOT of array or scalar input

Description

This function accepts fi objects as inputs.

Refer to the MATLAB not reference page for more information.



 noverflows

3-525

noverflows
Number of overflows

Syntax

y = noverflows(a)

y = noverflows(q)

Description

y = noverflows(a) returns the number of overflows of fi object a since logging was
turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a
fi object using the resetlog function.

y = noverflows(q) returns the accumulated number of overflows resulting from
quantization operations performed by a quantizer object q.

See Also
maxlog | minlog | nunderflows | resetlog



3 Functions — Alphabetical List

3-526

nts

Determine fixed-point data type

Syntax

nts

nts({'block',PORT})

nts({line-handle})

nts({gsl})

Description

nts opens the NumericTypeScope window. To connect to a signal in a Simulink model,
select the signal and then, in the NumericTypeScope window, select File >  Connect to
Simulink Signal.

The NumericTypeScope suggests a fixed-point data type in the form of a numerictype
object based on the dynamic range of the input data and the criteria that you specify in
the . The scope allows you to visualize the dynamic range of data in the form of a log2
histogram. It displays the data values on the X-axis and the number or percentage of
occurrences on the Y-axis. Each bin in the histogram corresponds to a bit in a word. For
example, 20 corresponds to the first integer bit in the binary word, 2-1 corresponds to the
first fractional bit in the binary word.

nts({'block',PORT}) opens the NumericTypeScope window and connects the scope
to the signal output from block on output port with index PORT. If the block has more
than one output port, you must specify the port index. The scope cannot connect to more
than one output port.

nts({line-handle}) opens the NumericTypeScope window and connects the scope to
the Simulink signal which has the line handle specified in line-handle.

nts({gsl}) opens the NumericTypeScope window and connects the scope to the
currently selected Simulink signal. You must select a signal in a Simulink model first,
otherwise the scope opens with no signal selected.



 nts

3-527

Input Arguments

block

Full path to the specified block.

line-handle

Handle of the Simulink signal that you want to view with the scope. To get the handle of
the currently selected signal, at the MATLAB command line, enter nts({gsl}).

PORT

Index of the output port that you want to view with the scope. If the block has more than
one output port, you must specify the index. The scope cannot connect to more than one
output port.

The NumericTypeScope Window

The NumericTypeScope opens with the default toolbars displayed at the top of the
window and the dialog panels to the right.



3 Functions — Alphabetical List

3-528



 nts

3-529

Toolbars

By default the scope displays a toolbar that provides these options:

Button Action

New NumericTypeScope.

Connect to Simulink signal. The scope connects to the currently selected
signal. If a block with only one output port is selected and the Connect
scope on selection of is set to Signal lines or blocks, connects to the
output port of the selected block. For more information, see .

After connecting the scope to a signal in a Simulink model, the scope displays an
additional toolbar with the following options:

Button Action

Stop simulation

Start simulation

Simulate one step

Snapshot. Freezes the display so that you can examine the results. To
reenable display refreshing, click the button again.
Highlight Simulink signal.

Persistent. By default, the scope makes a persistent connection to the
selected signal. If you want to view different signals during the simulation,
click this button to make a floating connection. You can then select any signal
in the model and the scope displays it.

Dialog Boxes and Panels

• “Configuration Dialog Box” on page 3-530
• “Dialog Panels” on page 3-533



3 Functions — Alphabetical List

3-530

Configuration Dialog Box

Use the NumericTypeScope configuration dialog box to control the behavior and
appearance of the scope window.

To open the Configuration dialog box, from the scope main menu, select File >
Configuration > Edit, or, with the scope as your active window, press the N key.

For information about each pane, see  and .

To save configuration settings for future use, select File > Configuration > Save as.
The configuration settings you save become the default configuration settings for the
NumericTypeScope.

Caution Before saving your own set of configuration settings in the matlab/toolbox/
fixpoint folder, save a backup copy of the default configuration settings in another
location. If you do not save a backup copy of the default configuration settings, you
cannot restore these settings at a later time.

To save your configuration settings for future use, save them in the matlab/toolbox/
fixpoint folder with the file name NumericTypeScopeSL.cfg. You can re-save
your configuration settings at anytime, but you must save them in this folder with this
filename.



 nts

3-531

Core Pane

The Core pane controls the general settings of the scope.

To open the Core:General UI Options dialog box, select General UI and then click
Options.

• Display the full source path in the title bar—Select this check box to display the
full path to the selected block in the model. Otherwise, the scope displays only the
block name.

• Open message log—Control when the Message Log window opens. The Message
log window helps you debug issues with the scope. Choose to open the Message Log
window for any of these conditions:

• for any new messages

• for warn/fail messages

• only for fail messages

• manually

The option defaults to for warn/fail messages.

You can open the Message Log at any time by selecting Help > Message Log or by
pressing Ctrl+M. The Message Log dialog box provides a system level record of
loaded configuration settings and registered extensions. The Message Log displays
summaries and details of each message, and you can filter the display of messages by
Type and Category.

• Type—Select the type of messages to display in the Message Log. You can select
All, Info, Warn, or Fail. Type defaults to All.



3 Functions — Alphabetical List

3-532

• Category—Select the category of messages to display in the Message Log. You
can select All, Configuration, or Extension. The scope uses Configuration
messages to indicate when new configuration files are loaded, and Extension
messages to indicate when components are registered. Category defaults to All.

To open the Core:Source UI Options dialog box, select General UI and then click
Options.

• Keyboard commands respect source playback modes—Has no effect. The
following table shows the keyboard shortcut mapping. You cannot disable this
mapping.

Action Keyboard Shortcut

Open new NumericTypeScope Insert
Change configuration N
Display keyboard help K
Play simulation P
Pause simulation Space
Stop simulation S
Step forward Right arrow, Page down

• Recently used sources list—Sets the maximum number of recently used sources
displayed under the Files menu option.

Sources Pane

The Sources pane controls how the scope connects to Simulink. You cannot disable the
Simulink source.



 nts

3-533

To open the Sources:Simulink Options dialog box, select the Sources tab and then
click Options.

• Load Simulink model if not open—When selected, if you specify a signal in a
Simulink model that is not currently open, the scope opens the model.

• Connect scope on selection of—Connects the scope only when you select signal
lines or when you select signal lines or blocks. If you select Signal lines or
blocks, the scope cannot connect to blocks that have more than one output port.

Dialog Panels

Bit Allocation Panel

The scope Bit Allocation panel provides options for specifying data type criteria. Adjust
these criteria to observe the effect on suggested numerictype. For streaming data, the
suggested numerictype adjusts over time in order to continue to satisfy the specified
criteria.



3 Functions — Alphabetical List

3-534

You can:

• Specify a known word length and signedness and, using Specify constraint, add
additional constraints such as the maximum number of occurrences outside range or
the smallest value that the suggested data type must represent.

• Specify Integer length and Fraction length constraints so that the scope suggests
an appropriate word length.

• Set the Signedness and Word length to Auto so that the scope suggests values for
these parameters.

• Enable Graphical control and use the cursors on either side of the binary point to
adjust the fraction length and observe the effect on the suggested numerictype on the
input data. For example, you can see the number of values that are outside range,
below precision, or both. You can also view representable minimum and maximum
values of the changed suggested data type.

• Specify extra bits for either the fraction length or the integer length. The extra bits
act as a safety margin to minimize the risk of overflow and precision loss.

Legend

The scope Legend panel informs you which colors the scope uses to indicate values.
These colors represent values that are outside range, in range, or below precision when
displayed in the scope.



 nts

3-535

Resulting Type

The Resulting Type panel describes the fixed-point data type as defined by scope
settings. By manipulating the visual display (via the Bit Allocation panel or with the
cursors), you can change the data type specification.

The Data Details section displays the percentage of values that fall outside range or
below precision with the numerictype object located at the top of this panel. SQNR
(Signal Quantization Noise Ratio) varies depending on the signal. If the parameter has
no value, then there is not enough data to calculate the SQNR. When scope information
or the numerictype changes, the SQNR resets.

The Type Details section provides details about the fixed-point data type. You can
copy the numerictype specification by right-clicking the Resulting Type pane and then
selecting Copy numerictype.

Input Data

The Input Data panel provides statistical information about the values currently
displayed in the NumericScopeType.



3 Functions — Alphabetical List

3-536

Examples

Connect a NumericTypeScope to a signal in a Simulink model

Open a NumericTypeScope window and connect to a signal.

Open the model.

fxpdemo_approx

Open a NumericTypeScope.

nts

In the fxpdemo_approx model, select the yEven signal.

In the NumericTypeScope window, select File > Connect to Simulink Signal.

Run the simulation to view the dynamic range of the output. The NumericTypeScope
suggests a data type for the output.



 nts

3-537
Connect a NumericTypeScope to a block output port

Connect a NumericTypeScope to a block output port and view the dynamic range of block
output.



3 Functions — Alphabetical List

3-538

Specify the block path and name and the output port number.

blk='fxpdemo_approx/Even';

nts({blk,1})

Run the simulation to view the dynamic range of the output. The NumericTypeScope
suggests a data type for the output.

Specify a Simulink signal to display

Connect a NumericTypeScope to a signal selected in a model.

Open the model.

fxpdemo_approx

In the fxpdemo_approx model, select the yEven signal.

Open a NumericTypeScope, specifying the line handle of the selected signal.

nts({gsl})

More About

Tips

• Use the NumericTypeScope to help you identify any values that are outside range or
below precision based on the current data type.

When the information is available, the scope indicates values that are outside range,
below precision, and in range of the data type by color-coding the histogram bars as
follows:

• Blue — Histogram bin contains values that are in range of the current data type.
• Red — Histogram bin contains values that are outside range in the current data

type.
• Yellow — Histogram bin contains values that are below precision in the current

data type.
• Select View > Vertical Units to select whether to display values as a percentage or

as an actual count.



 nts

3-539

• Use the View > Bring All NumericTypeScope Windows Forward menu option to
manage your NumericTypeScope windows. Selecting this option or pressing Ctrl+F
brings all NumericTypeScope windows into view.

See Also
hist | log2 | numerictypescope



3 Functions — Alphabetical List

3-540

num2bin

Convert number to binary string using quantizer object

Syntax

y = num2bin(q,x)

Description

y = num2bin(q,x) converts numeric array x into binary strings returned in y. When x
is a cell array, each numeric element of x is converted to binary. If x is a structure, each
numeric field of x is converted to binary.

num2bin and bin2num are inverses of one another, differing in that num2bin returns
the binary strings in a column.

Examples

x = magic(3)/9;

q = quantizer([4,3]);

y = num2bin(q,x)

Warning: 1 overflow.

y =

0111

0010

0011

0000

0100

0111

0101

0110

0001



 num2bin

3-541

See Also
bin2num | hex2num | num2hex | num2int



3 Functions — Alphabetical List

3-542

num2hex
Convert number to hexadecimal equivalent using quantizer object

Syntax

y = num2hex(q,x)

Description

y = num2hex(q,x) converts numeric array x into hexadecimal strings returned in y.
When x is a cell array, each numeric element of x is converted to hexadecimal. If x is a
structure, each numeric field of x is converted to hexadecimal.

For fixed-point quantizer objects, the representation is two's complement. For floating-
point quantizer objects, the representation is IEEE Standard 754 style.

For example, for q = quantizer('double')

num2hex(q,nan) 

ans = 

fff8000000000000 

The leading fraction bit is 1, all other fraction bits are 0. Sign bit is 1, exponent bits are
all 1.

num2hex(q,inf) 

ans = 

7ff0000000000000 

Sign bit is 0, exponent bits are all 1, all fraction bits are 0.

num2hex(q,-inf) 

ans = 



 num2hex

3-543

fff0000000000000 

Sign bit is 1, exponent bits are all 1, all fraction bits are 0.

num2hex and hex2num are inverses of each other, except that num2hex returns the
hexadecimal strings in a column.

Examples

This is a floating-point example using a quantizer object q that has 6-bit word length
and 3-bit exponent length.

x = magic(3);

q = quantizer('float',[6 3]);

y = num2hex(q,x)

y =

18

12

14

0c

15

18

16

17

10

See Also
bin2num | hex2num | num2bin | num2int



3 Functions — Alphabetical List

3-544

num2int

Convert number to signed integer

Syntax

y = num2int(q,x)

[y1,y,...] = num2int(q,x1,x,...)

Description

y = num2int(q,x) uses q.format to convert numeric x to an integer.

[y1,y,...] = num2int(q,x1,x,...) uses q.format to convert numeric values x1,
x2,... to integers y1,y2,...

Examples

All the two's complement 4-bit numbers in fractional form are given by

x = [0.875 0.375 -0.125 -0.625

     0.750 0.250 -0.250 -0.750

     0.625 0.125 -0.375 -0.875

     0.500 0.000 -0.500 -1.000];

q=quantizer([4 3]);

y = num2int(q,x)

y =

     7     3    -1    -5

     6     2    -2    -6

     5     1    -3    -7

     4     0    -4    -8



 num2int

3-545

More About

Algorithms

When q is a fixed-point quantizer object, f is equal to fractionlength(q), and x is
numeric

y x f
= ¥2

When q is a floating-point quantizer object, y = x. num2int is meaningful only for
fixed-point quantizer objects.

See Also
bin2num | hex2num | num2bin | num2hex



3 Functions — Alphabetical List

3-546

numberofelements
Number of data elements in an array

Note: numberofelements will be removed in a future release. Use numel instead.

Syntax

numberofelements(a)

Description

numberofelements(a) returns the number of data elements in an array. Using
numberofelements in your MATLAB code returns the same result for built-in types
and fi objects. Use numberofelements to write data-type independent MATLAB code
for array handling.

See Also
nargin | nargout | prod | size | subsref | subsasgn | numel



 numel

3-547

numel
Number of data elements in fi array

Syntax

n = numel(A)

Description

n = numel(A) returns the number of elements, n, in fi array A.

Using numel in your MATLAB code returns the same result for built-in types and fi
objects. Use numel to write data-type independent MATLAB code for array handling.

Examples

Number of Elements in 2-D fi Array

Create a 2-by-3- array of fi objects.

X = fi(ones(2,3),1,24,12)

X = 

     1     1     1

     1     1     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

numel counts 6 elements in the matrix.

n = numel(X)

n =



3 Functions — Alphabetical List

3-548

   6

Number of Elements in Multidimensional fi Array

Create a 2-by-3-by-4 array of fi objects.

X = fi(ones(2,3,4),1,24,12)

X = 

(:,:,1) =

     1     1     1

     1     1     1

(:,:,2) =

     1     1     1

     1     1     1

(:,:,3) =

     1     1     1

     1     1     1

(:,:,4) =

     1     1     1

     1     1     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

numel counts 24 elements in the matrix.

n = numel(X)

n =

   24

Input Arguments

A — Input array
scalar | vector | matrix | multidimensional array



 numel

3-549

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

Complex Number Support: Yes

See Also
numel



3 Functions — Alphabetical List

3-550

numerictype
Construct numerictype object

Syntax

T = numerictype

T = numerictype(s)

T = numerictype(s,w)

T = numerictype(s,w,f)

T = numerictype(s,w,slope,bias)

T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)

T = numerictype(property1,value1, ...)

T = numerictype(T1, property1, value1, ...)

T = numerictype('double')

T = numerictype('single')

T = numerictype('boolean')

Description

You can use the numerictype constructor function in the following ways:

• T = numerictype creates a default numerictype object.
• T = numerictype(s) creates a numerictype object with Fixed-point:

unspecified scaling, Signed property value s, and 16-bit word length.
• T = numerictype(s,w) creates a numerictype object with Fixed-point:

unspecified scaling, Signed property value s, and word length w.
• T = numerictype(s,w,f) creates a numerictype object with Fixed-point:

binary point scaling, Signed property value s, word length w and fraction
length f.

• T = numerictype(s,w,slope,bias) creates a numerictype object with Fixed-
point: slope and bias scaling, Signed property value s, word length w,
slope, and bias.

• T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)

creates a numerictype object with Fixed-point: slope and bias



 numerictype

3-551

scaling, Signed property value s, word length w, slopeadjustmentfactor,
fixedexponent, and bias.

• T = numerictype(property1,value1, ...) allows you to set properties for a
numerictype object using property name/property value pairs. All properties for
which you do not specify a value get assigned their default value.

• T = numerictype(T1, property1, value1, ...) allows you to make a copy of
an existing numerictype object, while modifying any or all of the property values.

• T = numerictype('double') creates a double numerictype.
• T = numerictype('single') creates a single numerictype.
• T = numerictype('boolean') creates a Boolean numerictype.

The properties of the numerictype object are listed below. These properties are
described in detail in “numerictype Object Properties”.

• Bias — Bias
• DataType — Data type category
• DataTypeOverride — Data type override settings. Note that this property is not

visible when its value is the default, Inherit.
• DataTypeMode — Data type and scaling mode
• FixedExponent — Fixed-point exponent
• SlopeAdjustmentFactor — Slope adjustment
• FractionLength — Fraction length of the stored integer value, in bits
• Scaling — Fixed-point scaling mode
• Signed — Signed or unsigned
• Signedness — Signed, unsigned, or auto
• Slope — Slope
• WordLength — Word length of the stored integer value, in bits

Examples

Create a default numerictype object

Type



3 Functions — Alphabetical List

3-552

T = numerictype

to create a default numerictype object.

T =

 

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

Create a numerictype object with specified word and fraction lengths

The following code creates a signed numerictype object with a 32-bit word length and
30-bit fraction length.

T = numerictype(1, 32, 30)

 T =

 

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 32

        FractionLength: 30

Create a numerictype object with unspecified scaling

If you omit the argument f, the scaling is unspecified.

T = numerictype(1, 32)

T =

 

          DataTypeMode: Fixed-point: unspecified scaling

            Signedness: Signed

            WordLength: 32

Create a numerictype object with default word length and scaling

If you omit the arguments w and f, the word length is automatically set to 16 bits and the
scaling is unspecified.



 numerictype

3-553

T = numerictype(1)

T =

 

          DataTypeMode: Fixed-point: unspecified scaling

            Signedness: Signed

            WordLength: 16

Create a numerictype object with specified property values

You can use property name/property value pairs to set numerictype properties when
you create the object.

T = numerictype('Signed', true, 'DataTypeMode',...

 'Fixed-point: slope and bias scaling',...

 'WordLength', 32, 'Slope', 2^-2, 'Bias', 4)

T =

 

          DataTypeMode: Fixed-point: slope and bias scaling

            Signedness: Signed

            WordLength: 32

                 Slope: 0.25

                  Bias: 4

Note: When you create a numerictype object using property name/property value pairs,
Fixed-Point Designer software first creates a default numerictype object, and then,
for each property name you specify in the constructor, assigns the corresponding value.
This behavior differs from the behavior that occurs when you use a syntax such as T
= numerictype(s,w). See “Example: Construct a numerictype Object with Property
Name and Property Value Pairs” in the Fixed-Point Designer User's Guide for more
information.

Create a numerictype object with unspecified sign

You can create a numerictype object with an unspecified sign by using property name/
property values pairs to set the Signedness property to Auto.

T = numerictype('Signedness', 'Auto')

T =



3 Functions — Alphabetical List

3-554

 

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Auto

            WordLength: 16

        FractionLength: 15

Note: Although you can create numerictype objects with an unspecified sign
(Signedness: Auto), all fi objects must have a Signedness of Signed or Unsigned.
If you use a numerictype object with Signedness: Auto to construct a fi object, the
Signedness property of the fi object automatically defaults to Signed.

Create a numerictype object with specified data type

You can create a numerictype object with a specific data type by including the property
name/property value pair in the numerictype constructor.

T = numerictype(0, 24, 12, 'DataType', 'ScaledDouble')

 T =

 

          DataTypeMode: Scaled double: binary point scaling

            Signedness: Unsigned

            WordLength: 24

        FractionLength: 12

MATLAB returns an unsigned numerictype object, T, with the specified WordLength of
24, FractionLength of 12, and with DataType set to ScaledDouble.

More About
• “numerictype Object Properties”

See Also
fi | fimath | fipref | quantizer



 NumericTypeScope

3-555

NumericTypeScope

Determine fixed-point data type

Syntax

H = NumericTypeScope

show(H)

step(H, data)

release(H)

reset(H)

Description

The NumericTypeScope is an object that provides information about the dynamic range
of your data. The scope provides a visual representation of the dynamic range of your
data in the form of a log2 histogram. In this histogram, the bit weights appear along
the X-axis, and the percentage of occurrences along the Y-axis. Each bin of the histogram
corresponds to a bit in the binary word. For example, 20 corresponds to the first integer
bit in the binary word, 2-1 corresponds to the first fractional bit in the binary word.

The scope suggests a data type in the form of a numerictype object that satisfies the
specified criteria. See the section on Bit Allocation in “Dialog Panels” on page 3-561.

H = NumericTypeScope returns a NumericTypeScope object that you can use to view
the dynamic range of data in MATLAB. To view the NumericTypeScope window after
creating H, use the show method.

show(H) opens the NumericTypeScope object H and brings it into view. Closing the
scope window does not delete the object from your workspace. If the scope object still
exists in your workspace, you can open it and bring it back into view using the show
method.

step(H, data) processes your data and allows you to visualize the dynamic range. The
object H retains previously collected information about the variable between each call to
step.



3 Functions — Alphabetical List

3-556

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

reset(H) clears all stored information from the NumericTypeScope object H. Resetting
the object clears the information displayed in the scope window.

Identifying Values Outside Range and Below Precision

The NumericTypeScope can also help you identify any values that are outside range
or below precision based on the current data type. To prepare the NumericTypeScope
to identify them, provide an input variable that is a fi object and verify that one of the
following conditions is true:

• The DataTypeMode of the fi object is set to Scaled doubles: binary point
scaling.

• The DataTypeOverride property of the Fixed-Point Designer fipref object is set to
ScaledDoubles.

When the information is available, the scope indicates values that are outside range,
below precision, and in range of the data type by color-coding the histogram bars as
follows:

• Blue — Histogram bin contains values that are in range of the current data type.
• Red — Histogram bin contains values that are outside range in the current data type.
• Yellow — Histogram bin contains values that are below precision in the current data

type.

For an example of the scope color coding, see the figures in “Vertical Units” on page
3-564.

See also Legend in “Dialog Panels” on page 3-561.

See the “Examples” on page 3-  section to learn more about using the
NumericTypeScope to select data types.

Dialog Boxes and Toolbar

• “The NumericTypeScope Window” on page 3-557



 NumericTypeScope

3-557

• “Configuration Dialog Box” on page 3-559
• “Dialog Panels” on page 3-561
• “Vertical Units” on page 3-564
• “Bring All NumericType Scope Windows Forward” on page 3-566
• “Toolbar (Mac Only)” on page 3-567

The NumericTypeScope Window

The NumericTypeScope opens with the default toolbars displayed at the top of the
window and the dialog panels to the right.



3 Functions — Alphabetical List

3-558



 NumericTypeScope

3-559

Configuration Dialog Box

The NumericTypeScope configuration allows you to control the behavior and
appearance of the scope window.

To open the Configuration dialog box, select File > Configuration > Edit, or, with the
scope as your active window, press the N key.

The Configuration Dialog box contains a series of panes each containing a table of
configuration options. See the reference section for each pane for instructions on setting
the options on each one. This dialog box has one pane, the Core pane, with only one
option, for General UI settings for the scope user interface.

To save configuration settings for future use, select File > Configuration > Save as.
The configuration settings you save become the default configuration settings for the
NumericTypeScope object.

Caution Before saving your own set of configuration settings in the matlab/toolbox/
fixedpoint/fixedpoint folder, save a backup copy of the default configuration settings in
another location. If you do not save a backup copy of the default configuration settings,
you cannot restore these settings at a later time.

To save your configuration settings for future use, save them in the matlab/toolbox/
fixedpoint/fixedpoint folder with the file name NumericTypeScopeComponent.cfg. You
can re-save your configuration settings at anytime, but remember to do so in the specified
folder using the specified file name.



3 Functions — Alphabetical List

3-560

Core Pane

The Core pane in the Configuration dialog box controls the general settings of the scope.

Click General UI and then click Options to open the Core:General UI Options dialog
box.

• Display the full source path in the title bar—Select this check box to display the
file name and variable name in the scope title bar. If the scope is not from a file, or if
you clear this check box, the scope displays only the variable name in the title bar.

• Open message log—Control when the Message Log window opens. The Message
log window helps you debug issues with the scope. Choose to open the Message Log
window for any of these conditions:

• for any new messages



 NumericTypeScope

3-561

• for warn/fail messages

• only for fail messages

• manually

The option defaults to for warn/fail messages.

You can open the Message Log at any time by selecting Help > Message Log or
by pressing Ctrl+M. The Message Log dialog box provides a system level record of
loaded configuration settings and registered extensions. The Message Log displays
summaries and details of each message, and you can filter the display of messages by
Type and Category.

• Type—Select the type of messages to display in the Message Log. You can select
All, Info, Warn, or Fail. Type defaults to All.

• Category—Select the category of messages to display in the Message Log. You
can select All, Configuration, or Extension. The scope uses Configuration
messages to indicate when new configuration files are loaded, and Extension
messages to indicate when components are registered. Category defaults to All.

Dialog Panels

•
•
•
•

Bit Allocation

The scope Bit Allocation dialog panel, as shown in the following figure, offers you several
options for specifying data type criteria.



3 Functions — Alphabetical List

3-562

You can use this panel to specify a known word length and the desired maximum
occurrences outside range. You can also use the panel to specify the desired number of
occurrences outside range and the smallest value to be represented by the suggested data
type. For streaming data, the suggested numerictype object adjusts over time in order to
continue to satisfy the specified criteria.

The scope also allows you to interact with the histogram plot. When you select
Graphical control on the Bit Allocation dialog panel, you enable cursors on either
side of the binary point. You can interact with these cursors and observe the effect of
the suggested numerictype on the input data. For example, you can see the number of
values that are outside range, below precision, or both. You can also view representable
minimum and maximum values of the data type.



 NumericTypeScope

3-563

Legend

The scope Legend panel informs you which colors the scope uses to indicate values.
These colors represent values that are outside range, in range, or below precision when
displayed in the scope.

Resulting Type

The Resulting Type panel describes the fixed-point data type as defined by scope
settings. By manipulating the visual display (via the Bit Allocation panel or with the
cursors) you can change the value of the data type.

The Data Details section displays the percentage of values that fall outside range or
below precision with the numerictype object located at the top of this panel. SQNR
(Signal Quantization Noise Ratio) varies depending on the signal. If the parameter has
no value, then there is not enough data to calculate the SQNR. When scope information
or the numerictype changes, the SQNR resets.

Type Details section provides details about the fixed-point data type.



3 Functions — Alphabetical List

3-564

Input Data

The Input Data panel provides statistical information about the values currently
displayed in the NumericScopeType object.

Vertical Units

Use the Vertical Units selection to display values that are outside range or below
precision as a percentage or as an actual count. For example, the following image shows
the values that are outside range or below precision as a percentage of the total values.



 NumericTypeScope

3-565

This next example shows the values that are outside range or below precision as an
actual count.



3 Functions — Alphabetical List

3-566

Bring All NumericType Scope Windows Forward

The NumericScopeType GUI offers a View > Bring All NumericType Scopes
Forward menu option to help you manage your NumericTypeScope windows. Selecting
this option or pressing Ctrl+F brings all NumericTypeScope windows into view. If a
NumericTypeScope window is not currently open, this menu option opens the window
and brings it into view.



 NumericTypeScope

3-567

Toolbar (Mac Only)

Activate the Toolbar by selecting View > Toolbar. When this tool is active, you can dock
or undock the scope from the GUI.

The toolbar feature is for the Mac only. Selecting Toolbar on Windows® and UNIX®

versions displays only an empty toolbar. The docking icon always appears in the GUI in
the upper-right corner for these versions.

Methods

release

Use this method to release system resources (such as memory, file handles or hardware
connections) and allow all properties and input characteristics to be changed.

Example:

>>release(H)

reset

Use this method to clear the information stored in the object H. Doing so allows you to
reuse H to process data from a different variable.

Example:

>>reset(H)



3 Functions — Alphabetical List

3-568

show

Use this method to open the scope window and bring it into view.

Example:

>>show(H)

step

Use this method to process your data and visualize the dynamic range in the scope
window.

Example:

>>step(H, data)

Examples

View the Dynamic Range of a fi Object

Set the fi object DataTypeOverride to Scaled Doubles, and then view its dynamic range.

fp = fipref;

initialDTOSetting = fp.DataTypeOverride;

fp.DataTypeOverride = 'ScaledDoubles';

a = fi(magic(10),1,8,2);

b = fi([a; 2.^(-5:4)],1,8,3);

h = NumericTypeScope;

step(h,b);

fp.DataTypeOverride = initialDTOSetting;



 NumericTypeScope

3-569

The log2 histogram display shows that the values appear both outside range and below
precision in the variable. In this case, b has a data type of numerictype(1,8,3). The
numerictype(1,8,3) data type provides 5 integer bits (including the signed bit), and 3



3 Functions — Alphabetical List

3-570

fractional bits. Thus, this data type can represent only values between -2^4 and 2^4-
2^-3 (from -16 to 15.8750). Given the range and precision of this data type, values greater
than 2^4 fall outside the range and values less than 2^-3 fall below the precision of
the data type. When you examine the NumericTypeScope display, you can see that
values requiring bits 5, 6, and 7 are outside range and values requiring fractional
bits 4 and 5 are below precision. Given this information, you can prevent values that
are outside range and below precision by changing the data type of the variable b to
numerictype(0,13,5).

Determine Numeric Type For a fi Object

View the dynamic range, and determine an appropriate numeric type for a fi object with
a DataTypeMode of Scaled double: binary point scaling.

Create a numerictype object with a DataTypeMode of Scaled double: binary point scaling.
You can then use that numerictype object to construct your fi objects. Because you set the
DataTypeMode to Scaled double: binary point scaling, the NumericTypeScope can now
identify overflows in your data.

T = numerictype;

T.DataTypeMode = 'Scaled double: binary point scaling';

T.WordLength = 8;

T.FractionLength = 6;

a = fi(sin(0:100)*3.5, T);

b = fi(cos(0:100)*1.75,T);

acc = fi(0,T);

h = NumericTypeScope;

for i = 1:length(a)

    acc(:) = a(i)*0.7+b(i);

    step(h,acc)

end



 NumericTypeScope

3-571

This dynamic range analysis shows that you can represent the entire range of data in the
accumulator with 5 bits; two to the left of the binary point (integer bits) and three to the
right of it (fractional bits). You can verify that this data type is able to represent all the



3 Functions — Alphabetical List

3-572

values by changing the WordLength and FractionLength properties of the numerictype
object T. Then, use T to redefine the accumulator.

To view the dynamic range analysis based on this new data type, reset the
NumericTypeScope object h, and rerun the loop.

T.WordLength = 5;

T.FractionLength = 2;

acc = fi(0,T);

release(h)

reset(h)

for i = 1:length(a)

    acc(:) = a(i)*0.7 + b(i);

    step(h,acc)

end



 NumericTypeScope

3-573

See Also
hist | log2



3 Functions — Alphabetical List

3-574

nunderflows
Number of underflows

Syntax

y = nunderflows(a)

y = nunderflows(q)

Description

y = nunderflows(a) returns the number of underflows of fi object a since logging
was turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a
fi object using the resetlog function.

y = nunderflows(q) returns the accumulated number of underflows resulting from
quantization operations performed by a quantizer object q.

See Also
maxlog | minlog | noverflows | resetlog



 oct

3-575

oct
Octal representation of stored integer of fi object

Syntax

oct(a)

Description

oct(a) returns the stored integer of fi object a in octal format as a string. oct(a) is
equivalent to a.oct.

Fixed-point numbers can be represented as

real world value stored integerfraction length
- = ¥

-
2

or, equivalently as

real world value slope stored integer bias- = ¥ +( )

The stored integer is the raw binary number, in which the binary point is assumed to be
at the far right of the word.

Examples

The following code

a = fi([-1 1],1,8,7);

y = oct(a)

z = a.oct

returns

y =



3 Functions — Alphabetical List

3-576

  200   177

z =

  200   177

See Also
bin | dec | hex | storedInteger



 ones

3-577

ones
Create array of all ones with fixed-point properties

Syntax

X = ones('like',p)

X = ones(n,'like',p)

X = ones(sz1,...,szN,'like',p)

X = ones(sz,'like',p)

Description

X = ones('like',p) returns a scalar 1 with the same numerictype, complexity (real
or complex), and fimath as p.

X = ones(n,'like',p) returns an n-by-n array of ones like p.

X = ones(sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array of ones like p.

X = ones(sz,'like',p) returns an array of ones like p. The size vector, sz, defines
size(X).

Examples

2-D Array of Ones With Fixed-Point Attributes

Create a 2-by-3 array of ones with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 2-by-3- array of ones that has the same numerictype properties as p.

X = ones(2,3,'like',p)



3 Functions — Alphabetical List

3-578

X = 

     1     1     1

     1     1     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

Size Defined by Existing Array

Define a 3-by-2 array A.

A = [1 4 ; 2 5 ; 3 6];

sz = size(A)

sz =

     3     2

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create an array of ones that is the same size as A and has the same numerictype
properties as p.

X = ones(sz,'like',p)

X = 

     1     1

     1     1

     1     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

Square Array of Ones With Fixed-Point Attributes

Create a 4-by-4 array of ones with specified numerictype and fimath properties.



 ones

3-579

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 4-by-4 array of ones that has the same numerictype properties as p.

X = ones(4, 'like', p)

X = 

     1     1     1     1

     1     1     1     1

     1     1     1     1

     1     1     1     1

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

Create Array of Ones with Attached fimath

Create a signed fi object with word length of 16, fraction length of 15 and
OverflowAction set to Wrap.

format long

p = fi([],1,16,15,'OverflowAction','Wrap');

Create a 2-by-2 array of ones with the same numerictype properties as p.

X = ones(2,'like',p) 

X =

   0.999969482421875   0.999969482421875

   0.999969482421875   0.999969482421875

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

        RoundingMethod: Nearest

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision 



3 Functions — Alphabetical List

3-580

1 cannot be represented by the data type of p, so the value saturates. The output fi
object X has the same numerictype and fimath properties as p.

Complex Fixed-Point One

Create a scalar fixed-point 1 that is not real valued, but instead is complex like an
existing array.

Define a complex fi object.

p = fi( [1+2i 3i],1,24,12);

Create a scalar 1 that is complex like p.

X = ones('like',p)

X = 

   1.0000 + 0.0000i

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing
the algorithm itself. To reuse the algorithm, define the data types separately from the
algorithm.

This approach allows you to define a baseline by running the algorithm with floating-
point data types. You can then test the algorithm with different fixed-point data types
and compare the fixed-point behavior to the baseline without making any modifications
to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T, which is a
structure that defines the data types of the coefficients and the input and output data.

function [y,z] = my_filter(b,a,x,z,T)

    % Cast the coefficients to the coefficient type

    b = cast(b,'like',T.coeffs);

    a = cast(a,'like',T.coeffs);

    % Create the output using zeros with the data type

    y = zeros(size(x),'like',T.data);



 ones

3-581

    for i = 1:length(x)

        y(i) = b(1)*x(i) + z(1);

        z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

        z(2) = b(3)*x(i)        - a(3) * y(i);

    end

end

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a
floating-point step input and a fixed-point step input, and then compares the results.

function zeros_ones_cast_example

    % Define coefficients for a filter with specification

    % [b,a] = butter(2,0.25)

    b = [0.097631072937818   0.195262145875635   0.097631072937818];

    a = [1.000000000000000  -0.942809041582063   0.333333333333333];

    % Define floating-point types

    T_float.coeffs = double([]);

    T_float.data   = double([]);

    % Create a step input using ones with the 

    % floating-point data type

    t = 0:20;

    x_float = ones(size(t),'like',T_float.data);

    % Initialize the states using zeros with the 

    % floating-point data type

    z_float = zeros(1,2,'like',T_float.data);

    % Run the floating-point algorithm

    y_float = my_filter(b,a,x_float,z_float,T_float);

     

    % Define fixed-point types

    T_fixed.coeffs = fi([],true,8,6);

    T_fixed.data   = fi([],true,8,6);

    % Create a step input using ones with the 

    % fixed-point data type

    x_fixed = ones(size(t),'like',T_fixed.data);

    % Initialize the states using zeros with the 

    % fixed-point data type

    z_fixed = zeros(1,2,'like',T_fixed.data);



3 Functions — Alphabetical List

3-582

    % Run the fixed-point algorithm

    y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);

     

    % Compare the results

    coder.extrinsic('clf','subplot','plot','legend')

    clf

    subplot(211)

    plot(t,y_float,'co-',t,y_fixed,'kx-')

    legend('Floating-point output','Fixed-point output')

    title('Step response')

    subplot(212)

    plot(t,y_float - double(y_fixed),'rs-')

    legend('Error')

    figure(gcf)

end

• “Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using
cast and zeros”

Input Arguments

n — Size of square matrix
integer value

Size of square matrix, specified as an integer value, defines the output as a square, n-by-
n matrix of ones.

• If n is zero, X is an empty matrix.
• If n is negative, it is treated as zero.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values, defines X as a sz1-by...-
by-szN array.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.



 ones

3-583

• If any trailing dimensions greater than two have a size of one, the output, X, does not
include those dimensions.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of this vector
indicates the size of the corresponding dimension.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not

include those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a
complex object, you must specify a value for the prototype. Otherwise, you do not need to
specify a value.

If the value 1 overflows the numeric type of p, the output saturates regardless of the
specified OverflowAction property of the attached fimath. All subsequent operations
performed on the output obey the rules of the attached fimath.

Complex Number Support: Yes

More About

Tips

Using the b = cast(a,'like',p) syntax to specify data types separately from
algorithm code allows you to:



3 Functions — Alphabetical List

3-584

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements

for different data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm

code.

• “Manual Fixed-Point Conversion Workflow”
• “Manual Fixed-Point Conversion Best Practices”

See Also
cast | ones | zeros



 or

3-585

or
Find logical OR of array or scalar inputs

Description

This function accepts fi objects as inputs.

Refer to the MATLAB or reference page for more information.



3 Functions — Alphabetical List

3-586

patch
Create patch graphics object

Description

This function accepts fi objects as inputs.

Refer to the MATLAB patch reference page for more information.



 pcolor

3-587

pcolor
Create pseudocolor plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB pcolor reference page for more information.



3 Functions — Alphabetical List

3-588

permute
Rearrange dimensions of multidimensional array

Description

This function accepts fi objects as inputs.

Refer to the MATLAB permute reference page for more information.



 plot

3-589

plot
Create linear 2-D plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB plot reference page for more information.



3 Functions — Alphabetical List

3-590

plot3
Create 3-D line plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB plot3 reference page for more information.



 plotmatrix

3-591

plotmatrix
Draw scatter plots

Description

This function accepts fi objects as inputs.

Refer to the MATLAB plotmatrix reference page for more information.



3 Functions — Alphabetical List

3-592

plotyy
Create graph with y-axes on right and left sides

Description

This function accepts fi objects as inputs.

Refer to the MATLAB plotyy reference page for more information.



 plus

3-593

plus
Matrix sum of fi objects

Syntax

plus(a,b)

Description

plus(a,b) is called for the syntax a + b when a or b is an object.

a + b adds matrices a and b. a and b must have the same dimensions unless one is a
scalar value (a 1-by-1 matrix). A scalar value can be added to any other value.

plus does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer
calculations, see “fimath Properties Usage for Fixed-Point Arithmetic” and “fimath
ProductMode and SumMode” in the Fixed-Point Designer documentation.

For information about calculations using Fixed-Point Designer software, see the Fixed-
Point Designer documentation.

See Also
minus | mtimes | times | uminus



3 Functions — Alphabetical List

3-594

polar
Plot polar coordinates

Description

This function accepts fi objects as inputs.

Refer to the MATLAB polar reference page for more information.



 pow2

3-595

pow2

Efficient fixed-point multiplication by 2K

Syntax

b = pow2(a,K)

Description

b = pow2(a,K) returns the value of a shifted by K bits where K is an integer and a and
b are fi objects. The output b always has the same word length and fraction length as
the input a.

Note: In fixed-point arithmetic, shifting by K bits is equivalent to, and more efficient
than, computing b = a*2k.

If K is a non-integer, the pow2 function will round it to floor before performing the
calculation.

The scaling of a must be equivalent to binary point-only scaling; in other words, it must
have a power of 2 slope and a bias of 0.

a can be real or complex. If a is complex, pow2 operates on both the real and complex
portions of a.

The pow2 function obeys the OverflowAction and RoundingMethod properties
associated with a. If obeying the RoundingMethod property associated with a is not
important, try using the bitshift function.

The pow2 function does not support fi objects of data type Boolean.

The function also does not support the syntax b = pow2(a) when a is a fi object.



3 Functions — Alphabetical List

3-596

Examples
Example 1

In the following example, a is a real-valued fi object, and K is a positive integer.

The pow2 function shifts the bits of a 3 places to the left, effectively multiplying a by 23.

a = fi(pi,1,16,8)

b = pow2(a,3)

binary_a = bin(a)

binary_b = bin(b)

MATLAB returns:

a =

 

    3.1406

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

b =

 

   25.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

binary_a =

0000001100100100

binary_b =

0001100100100000

Example 2

In the following example, a is a real-valued fi object, and K is a negative integer.



 pow2

3-597

The pow2 function shifts the bits of a 4 places to the right, effectively multiplying a by 2–

4.

a = fi(pi,1,16,8)

b = pow2(a,-4)

binary_a = bin(a)

binary_b = bin(b)

MATLAB returns:

a =

 

    3.1406

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

b =

 

    0.1953

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

binary_a =

0000001100100100

binary_b =

0000000000110010

Example 3

The following example shows the use of pow2 with a complex fi object:

format long g

P = fipref('NumericTypeDisplay', 'short');

a = fi(57 - 2i, 1, 16, 8) 



3 Functions — Alphabetical List

3-598

a =

                          57 -                     2i

      s16,8

pow2(a, 2) 

ans =

               127.99609375 -                     8i

      s16,8

See Also
bitshift | bitsll | bitsra | bitsrl



 power

3-599

power

Fixed-point array power (.^)

Syntax

c = power(a,k)

c = a.^k

Description

c = power(a,k) and c = a.^k compute element-by-element power. The exponent k
requires a positive, real-valued integer value.

The fixed-point output array c has the same local fimath as the input a. If a has no local
fimath, the output c also has no local fimath. The array power operation is performed
using default fimath settings.

Examples

Compute the power of a 2-dimensional array for exponent values 0, 1, 2, and 3.

x = fi([0 1 2; 3 4 5], 1, 32);

px0 = x.^0 

px1 = x.^1 

px2 = x.^2

px3 = x.^3

More About

Tips

For more information about the power function, see the MATLAB power reference page.



3 Functions — Alphabetical List

3-600

See Also
power | mpower



 qr

3-601

qr
Orthogonal-triangular decomposition

Description

The Fixed-Point Designer qr function differs from the MATLAB qr function as follows:

• The input A in qr(A) must be a real, signed fi object.
• The qr function ignores and discards any fimath attached to the input. The output is

always associated with the default fimath.
• Pivoting is not supported for fixed-point inputs. You cannot use the following

syntaxes:

• [~,~,E] = qr(...)

• qr(A,'vector')

• qr(A,B,'vector')

• Economy size decomposition is not supported for fixed-point inputs. You cannot use
the following syntax: [Q,R] = qr(A,0).

• The least-squares-solution form is not supported for fixed-point inputs. You cannot
use the following syntax: qr(A,B).

Refer to the MATLAB qr reference page for more information.



3 Functions — Alphabetical List

3-602

quantize

Quantize fixed-point numbers

Syntax

y = quantize(x)

y = quantize(x,nt)

y = quantize(x,nt,rm)

y = quantize(x,nt,rm,oa)

yBP = quantize(x,s)

yBP = quantize(x,s,wl)

yBP = quantize(x,s,wl,fl)

yBP = quantize(x,s,wl,fl,rm)

yBP = quantize(x,s,wl,fl,rm,oa)

Description

y = quantize(x) quantizes x using these default values:

• numerictype (true,16,15)
• Floor rounding method
• Wrap overflow action

The numerictype, rounding method, and overflow action apply only during the
quantization. The resulting value, quantized y, does not have any fimath attached to it.

y = quantize(x,nt) quantizes x to the specified numerictype nt. The rounding
method and overflow action use default values.

y = quantize(x,nt,rm) quantizes x to the specified numerictype, nt and rounding
method, rm. The overflow action uses the default value.

y = quantize(x,nt,rm,oa) quantizes x to the specified numerictype, nt, rounding
method, rm, and overflow action, oa.



 quantize

3-603

yBP = quantize(x,s) quantizes x to a binary-point, scaled fixed-point number. The s
input specifies the sign to be used in numerictype (s,16,15). Unspecified properties
use these default values:

• WordLength 16
• FractionLength 15
• RoundingMethod Floor
• OverflowAction Wrap

yBP = quantize(x,s,wl) uses the specified word length, wl. The fraction length
defaults to wl–1. Unspecified properties use default values.

yBP = quantize(x,s,wl,fl) uses the specified fraction length, fl. Unspecified
properties use default values.

yBP = quantize(x,s,wl,fl,rm) uses the specified rounding method, rm. Unspecified
properties use default values.

yBP = quantize(x,s,wl,fl,rm,oa) uses the specified overflow action, oa.

Examples

Quantize Binary-Point Scaled to Binary-Point Scaled Data

Create numerictype object, ntBP, which specifies a signed, 8-bit word length, 4-bit
fraction length data type.

ntBP = numerictype(1,8,4);  

Define the input.

x_BP = fi(pi) 

x_BP =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16



3 Functions — Alphabetical List

3-604

        FractionLength: 13

Use the defined numerictype, ntBP, to quantize the input, x_BP, to a binary-point
scaled data type.

yBP1 = quantize(x_BP,ntBP)

yBP1 =

 

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 4 

Quantize Binary-Point Scaled to Slope-Bias Data

Create a numerictype object, ntSB, which specifies a slope-bias data type.

ntSB = numerictype('Scaling','SlopeBias', ...

      'SlopeAdjustmentFactor',1.8,'Bias',...

      1,'FixedExponent',-12);  

Define the input.

x_BP = fi(pi) 

x_BP =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

Use the defined numerictype, ntSB, to quantize the input, x_BP, to a slope-bias data
type.

ySB1 = quantize(x_BP, ntSB)

ySB1 =

 

    3.1410



 quantize

3-605

          DataTypeMode: Fixed-point: slope and bias scaling

            Signedness: Signed

            WordLength: 16

                 Slope: 0.000439453125

                  Bias: 1

Quantize Slope-Bias Scaled to Binary-Point Scaled Data

Create a numerictype object, ntBP, which specifies a signed, 8-bit word length, 4-bit
fraction length data type.

ntBP = numerictype(1,8,4);  

Define the input.

x_SB = fi(rand(5,3),numerictype('Scaling','SlopeBias','Bias',-0.125))

x_SB =

 

    0.8147    0.0975    0.1576

    0.8750    0.2785    0.8750

    0.1270    0.5469    0.8750

    0.8750    0.8750    0.4854

    0.6324    0.8750    0.8003

          DataTypeMode: Fixed-point: slope and bias scaling

            Signedness: Signed

            WordLength: 16

                 Slope: 3.0517578125e-5

                  Bias: -0.125

Use the defined numerictype, ntBP, to quantize the input, x_SB, to a binary point
scaled data type.

yBP2 = quantize(x_SB,ntBP,'Nearest','Saturate')

yBP2 =

 

    0.8125    0.1250    0.1875

    0.8750    0.2500    0.8750

    0.1250    0.5625    0.8750

    0.8750    0.8750    0.5000

    0.6250    0.8750    0.8125



3 Functions — Alphabetical List

3-606

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 4

Quantize Slope-Bias Scaled to Slope-Bias Scaled Data

Create a numerictype object, ntSB, which specifies a slope-bias data type.

ntSB = numerictype('Scaling','SlopeBias', ...

      'SlopeAdjustmentFactor',1.8,'Bias',...

      1,'FixedExponent',-12);  

Define the input.

x_SB = fi(rand(5,3),numerictype('Scaling','SlopeBias','Bias',-0.125))

x_SB =

 

    0.8147    0.0975    0.1576

    0.8750    0.2785    0.8750

    0.1270    0.5469    0.8750

    0.8750    0.8750    0.4854

    0.6324    0.8750    0.8003

          DataTypeMode: Fixed-point: slope and bias scaling

            Signedness: Signed

            WordLength: 16

                 Slope: 3.0517578125e-5

                  Bias: -0.125

Use the defined numerictype, ntSB, to quantize the input, x_SB, to a slope-bias data
type.

ySB2 = quantize(x_SB,ntSB,'Ceiling','Wrap')

ySB2 =

 

    0.8150    0.0978    0.1580

    0.8752    0.2789    0.8752

    0.1272    0.5469    0.8752

    0.8752    0.8752    0.4854

    0.6326    0.8752    0.8005

          DataTypeMode: Fixed-point: slope and bias scaling



 quantize

3-607

            Signedness: Signed

            WordLength: 16

                 Slope: 0.000439453125

                  Bias: 1

Quantize Built-in Integer to Binary-Point Scaled Data

Create a numerictype object, ntBP, which specifies a signed, 8-bit word length, 4-bit
fraction length data type.

ntBP = numerictype(1,8,4);  

Define the input.

xInt = int8(-16:4:16)

xInt =

  -16  -12   -8   -4    0    4    8   12   16

Use the defined numerictype, ntBP, to quantize the inputxInt to a binary point scaled
data type.

yBP3 = quantize(xInt,ntBP,'Zero')

yBP3 =

 

  0    4   -8   -4    0    4   -8   -4    0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 4

Show the range of the quantized output.

range(yBP3)

ans =

 

   -8.0000    7.9375

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8



3 Functions — Alphabetical List

3-608

        FractionLength: 4

The first two and last three values are wrapped because they are outside the
representable range of the output type.

Quantize Built-in Integer to Slope-Bias Data

Create a numerictype object ntSB, which specifies a slope-bias data type.

ntSB = numerictype('Scaling','SlopeBias', ...

      'SlopeAdjustmentFactor',1.8,'Bias',...

      1,'FixedExponent',-12);  

Define the input.

xInt = int8(-16:4:16)

xInt =

  -16  -12   -8   -4    0    4    8   12   16

Use the defined numerictype, ntSB, to quantize the input, xInt, to a slope-bias data
type.

ySB3 = quantize(xInt,ntSB,'Round','Saturate')

ySB3 =

 

   Columns 1 through 6

  -13.4000  -11.9999   -8.0000   -4.0001   -0.0002    4.0001

  Columns 7 through 9

    8.0000   12.0000   15.3996

          DataTypeMode: Fixed-point: slope and bias scaling

            Signedness: Signed

            WordLength: 16

                 Slope: 0.000439453125

                  Bias: 1

Show the range of the quantized output.

range(ySB3)

ans =

 



 quantize

3-609

  -13.4000   15.3996

          DataTypeMode: Fixed-point: slope and bias scaling

            Signedness: Signed

            WordLength: 16

                 Slope: 0.000439453125

                  Bias: 1

The first and last values saturate because they are at the limits of he representable
range of the output type.

• “Compute Quantization Error”

Input Arguments

x — Input data
fi objects or built-in integers

Input data to quantize. Valid inputs are:

• Built-in signed or unsigned integers (int8, int16, int32, int64, uint8, uint16,
uint32, uint64)

• Binary point scaled fixed-point fi
• Slope-bias scaled fixed-point fi

Although fi doubles and fi singles are allowed as inputs, they pass through the quantize
function without being quantized.

nt — Numerictype
(true,16,15) (default)

Numerictype object that defines the sign, word length, and fraction length of a fixed-
point number.

rm — Rounding method
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding method to use

oa — Overflow action
Wrap (default) | Saturate



3 Functions — Alphabetical List

3-610

Action to take when a data overflow occurs

s — Signedness
true (default) | false

Whether the fixed-point number is signed (true) or unsigned (false)

wl — Word length
16 (default)

Word length of the fixed-point number

fl — Fraction length
15 (default)

Fraction length of the fixed-point number

Output Arguments

y — Quantized output
fi object

Quantized value of the input

yBP — Quantized output
fi object

Input quantized to binary-point scaled value

See Also
fi | fimath | fixed.Quantizer | numerictype



 quantize method

3-611

quantize method

Apply quantizer object to data

Syntax

y = quantize(q, x)

[y1,y2,...] = quantize(q,x1,x2,...)

Description

y = quantize(q, x) uses the quantizer object q to quantize x. When x is a numeric
array, each element of x is quantized. When x is a cell array, each numeric element of
the cell array is quantized. When x is a structure, each numeric field of x is quantized.
Quantize does not change nonnumeric elements or fields of x, nor does it issue warnings
for nonnumeric values. The output y is a built-in double. When the input x is a structure
or cell array, the fields of y are built-in doubles.

[y1,y2,...] = quantize(q,x1,x2,...) is equivalent to

y1 = quantize(q,x1), y2 = quantize(q,x2),...

The quantizer object states

• max — Maximum value before quantizing
• min — Minimum value before quantizing
• noverflows — Number of overflows
• nunderflows — Number of underflows
• noperations — Number of quantization operations

are updated during the call to quantize, and running totals are kept until a call to
resetlog is made.



3 Functions — Alphabetical List

3-612

Examples

Custom Precision Floating-Point

The following example demonstrates using quantize to quantize data.

u=linspace(-15, 15, 1000);

q=quantizer([6 3], 'float');

range(q)

ans =

   -14    14

y=quantize(q, u);

plot(u, y); title(tostring(q))

Warning: 68 overflow(s) occurred in the fi quantize operation. 



 quantize method

3-613

Fixed-Point

The following example demonstrates using quantize to quantize data.

u=linspace(-15, 15, 1000);

q=quantizer([6 2], 'wrap');

range(q)

ans =

   -8.0000    7.7500

y=quantize(q, u);



3 Functions — Alphabetical List

3-614

plot(u, y); title(tostring(q))

Warning: 468 overflow(s) occurred in the fi quantize operation. 

See Also
assignmentquantizer | quantizer | set | unitquantize | unitquantizer



 quantizer

3-615

quantizer
Construct quantizer object

Syntax
q = quantizer

q = quantizer('PropertyName1',PropertyValue1,...)

q = quantizer(PropertyValue1,PropertyValue2,...)

q = quantizer(struct)

q = quantizer(pn,pv)

Description
q = quantizer creates a quantizer object with properties set to their default values.
To use this object to quantize values, use the quantize method.

q = quantizer('PropertyName1',PropertyValue1,...) uses property name/
property value pairs.

q = quantizer(PropertyValue1,PropertyValue2,...) creates a quantizer
object with the listed property values. When two values conflict, quantizer sets the last
property value in the list. Property values are unique; you can set the property names by
specifying just the property values in the command.

q = quantizer(struct), where struct is a structure whose field names are property
names, sets the properties named in each field name with the values contained in the
structure.

q = quantizer(pn,pv) sets the named properties specified in the cell array of strings
pn to the corresponding values in the cell array pv.

The quantizer object property values are listed below. These properties are described in
detail in “quantizer Object Properties”.

Property Name Property Value Description

mode 'double' Double-precision mode.
Override all other
parameters.



3 Functions — Alphabetical List

3-616

Property Name Property Value Description

'float' Custom-precision
floating-point mode.

'fixed' Signed fixed-point
mode.

'single' Single-precision mode.
Override all other
parameters.

'ufixed' Unsigned fixed-point
mode.

'ceil' Round toward positive
infinity.

'convergent' Round to nearest
integer with ties
rounding to nearest
even integer.

'fix' Round toward zero.
'floor' Round toward negative

infinity.
'Nearest' Round to nearest

integer with ties
rounding toward
positive infinity.

roundmode

'Round' Round to nearest
integer with ties
rounding to nearest
integer with greater
absolute value.

'saturate' Saturate on overflow.overflowmode (fixed-point

only) 'wrap' Wrap on overflow.
[wordlength

fractionlength]

Format for fixed or
ufixed mode.

format

[wordlength

exponentlength]

Format for float mode.



 quantizer

3-617

The default property values for a quantizer object are

        DataMode = fixed

       RoundMode = floor

    OverflowMode = saturate

             Format = [16  15]

Along with the preceding properties, quantizer objects have read-only states: max,
min, noverflows, nunderflows, and noperations. They can be accessed through
quantizer/get or q.maxlog, q.minlog, q.noverflows, q.nunderflows, and
q.noperations, but they cannot be set. They are updated during the quantizer/
quantize method, and are reset by the resetlog function.

The following table lists the read-only quantizer object states:

Property Name Description

max Maximum value before quantizing
min Minimum value before quantizing
noverflows Number of overflows
nunderflows Number of underflows
noperations Number of data points quantized

Examples

The following example operations are equivalent.

Setting quantizer object properties by listing property values only in the command,

q = quantizer('fixed', 'Ceiling', 'Saturate', [5 4])

Using a structure struct to set quantizer object properties,

struct.mode = 'fixed'; 

struct.roundmode = 'ceil'; 

struct.overflowmode = 'saturate'; 

struct.format = [5 4]; 

q = quantizer(struct); 



3 Functions — Alphabetical List

3-618

Using property name and property value cell arrays pn and pv to set quantizer object
properties,

pn = {'mode',  'roundmode', 'overflowmode', 'format'}; 

pv = {'fixed', 'ceil', 'saturate', [5 4]}; 

q = quantizer(pn, pv) 

Using property name/property value pairs to configure a quantizer object,

q = quantizer( 'mode', 'fixed','roundingmode','ceil',... 

'overflowmode', 'saturate', 'format', [5 4]); 

See Also
assignmentquantizer | fi | fimath | fipref | numerictype | quantize | set |
unitquantize | unitquantizer



 quiver

3-619

quiver
Create quiver or velocity plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB quiver reference page for more information.



3 Functions — Alphabetical List

3-620

quiver3
Create 3-D quiver or velocity plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB quiver3 reference page for more information.



 randquant

3-621

randquant
Generate uniformly distributed, quantized random number using quantizer object

Syntax

randquant(q,n)

randquant(q,m,n)

randquant(q,m,n,p,...)

randquant(q,[m,n])

randquant(q,[m,n,p,...])

Description

randquant(q,n) uses quantizer object q to generate an n-by-n matrix with random
entries whose values cover the range of q when q is a fixed-point quantizer object.
When q is a floating-point quantizer object, randquant populates the n-by-n array
with values covering the range
-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n) uses quantizer object q to generate an m-by-n matrix with random
entries whose values cover the range of q when q is a fixed-point quantizer object.
When q is a floating-point quantizer object, randquant populates the m-by-n array
with values covering the range
-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n,p,...) uses quantizer object q to generate an m-by-n-by-p-by ...
matrix with random entries whose values cover the range of q when q is fixed-point
quantizer object. When q is a floating-point quantizer object, randquant populates
the matrix with values covering the range
-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n]) uses quantizer object q to generate an m-by-n matrix with
random entries whose values cover the range of q when q is a fixed-point quantizer
object. When q is a floating-point quantizer object, randquant populates the m-by-n
array with values covering the range



3 Functions — Alphabetical List

3-622

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n,p,...]) uses quantizer object q to generate p m-by-n matrices
containing random entries whose values cover the range of q when q is a fixed-point
quantizer object. When q is a floating-point quantizer object, randquant populates
the m-by-n arrays with values covering the range
-[square root of realmax(q)] to [square root of realmax(q)]

randquant produces pseudorandom numbers. The number sequence randquant
generates during each call is determined by the state of the generator. Because MATLAB
resets the random number generator state at startup, the sequence of random numbers
generated by the function remains the same unless you change the state.

randquant works like rng in most respects.

Examples
q=quantizer([4 3]);

rng('default')

randquant(q,3)

ans =

    0.5000    0.6250   -0.5000

    0.6250    0.1250         0

   -0.8750   -0.8750    0.7500

See Also
quantizer | rand | range | realmax



 range

3-623

range
Numerical range of fi or quantizer object

Syntax

range(a)

[min_val, max_val]= range(a)

r = range(q)

[min_val, max_val] = range(q)

Description

range(a) returns a fi object with the minimum and maximum possible values of fi
object a. All possible quantized real-world values of a are in the range returned. If a is
a complex number, then all possible values of real(a) and imag(a) are in the range
returned.

[min_val, max_val]= range(a) returns the minimum and maximum values of fi
object a in separate output variables.

r = range(q) returns the two-element row vector r = [a b] such that for all real x, y =
quantize(q,x) returns y in the range a ≤ y ≤ b.

[min_val, max_val] = range(q) returns the minimum and maximum values of the
range in separate output variables.

Examples
q = quantizer('float',[6 3]);

r = range(q)

r =

   -14    14

q = quantizer('fixed',[4 2],'floor');

[min_val,max_val] = range(q)



3 Functions — Alphabetical List

3-624

min_val =

    -2

max_val =

   1.7500

More About

Algorithms

If q is a floating-point quantizer object, a = -realmax(q), b = realmax(q).

If q is a signed fixed-point quantizer object (datamode = 'fixed'),

a q q
w

f
= - - =

-
-

realmax( ) eps( )
2

2

1

b q
w

f
= =

-
-

realmax( )
2 1

2

1

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'),

a = 0

b q
w

f
= =

-

realmax( )
2 1

2

See realmax for more information.

See Also
eps | exponentmax | exponentmin | fractionlength | intmax | intmin |
lowerbound | lsb | max | min | realmax | realmin | upperbound



 rdivide

3-625

rdivide
Right-array division (./)

Syntax
c = rdivide(a,b)

c = a./b

Description
c = rdivide(a,b) and c = a./b perform right-array division by dividing each
element of a by the corresponding element of b. If inputs a and b are not the same size,
one of them must be a scalar value.

The numerator input a can be complex, but the denominator b requires a real-valued
input. If a is complex, the real and imaginary parts of a are independently divided by b.

The following table shows the rules used to assign property values to the output of the
rdivide function.

Output Property Rule

Signedness If either input is Signed, the output is Signed.

If both inputs are Unsigned, the output is Unsigned.
WordLength The output word length equals the maximum of the

input word lengths.
FractionLength For c = a./b, the fraction length of output c equals

the fraction length of a minus the fraction length of b.

The following table shows the rules the rdivide function uses to handle inputs with
different data types.

Case Rule

Interoperation of fi objects
and built-in integers

Built-in integers are treated as fixed-point objects.

For example, B = int8(2) is treated as an s8,0 fi
object.



3 Functions — Alphabetical List

3-626

Case Rule

Interoperation of fi objects
and constants

MATLAB for code generation treats constant integers
as fixed-point objects with the same word length as the
fi object and a fraction length of 0.

Interoperation of mixed data
types

Similar to all other fi object functions, when inputs a
and b have different data types, the data type with the
higher precedence determines the output data type. The
order of precedence is as follows:

1 ScaledDouble

2 Fixed-point

3 Built-in double
4 Built-in single

When both inputs are fi objects, the only data types
that are allowed to mix are ScaledDouble and Fixed-
point.

Examples

In this example, you perform right-array division on a 3-by-3 magic square of fi objects.
Each element of the 3-by-3 magic square is divided by the corresponding element in the
3-by-3 input array b.

a = fi(magic(3))

b = int8([3  3 4; 1 2 4 ; 3 1 2 ])

c = a./b

The mrdivide function outputs a 3-by-3 array of signed fi objects, each of which has a
word length of 16 bits and fraction length of 11 bits.

a =

 

     8     1     6

     3     5     7

     4     9     2

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed



 rdivide

3-627

            WordLength: 16

        FractionLength: 11

b =

    3    3    4

    1    2    4

    3    1    2

 

c =

 

    2.6665    0.3335    1.5000

    3.0000    2.5000    1.7500

    1.3335    9.0000    1.0000

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

See Also
add | fi | divide | fimath | mrdivide | numerictype | sub | sum



3 Functions — Alphabetical List

3-628

real
Real part of complex number

Description

Refer to the MATLAB real reference page for more information.



 realmax

3-629

realmax
Largest positive fixed-point value or quantized number

Syntax

realmax(a)

realmax(q)

Description

realmax(a) is the largest real-world value that can be represented in the data type of
fi object a. Anything larger overflows.

realmax(q) is the largest quantized number that can be represented where q is a
quantizer object. Anything larger overflows.

Examples
q = quantizer('float',[6 3]);

x = realmax(q)

x =

    14

More About

Algorithms

If q is a floating-point quantizer object, the largest positive number, x, is

x eps qEmax
= ◊ -2 2( ( ))

If q is a signed fixed-point quantizer object, the largest positive number, x, is



3 Functions — Alphabetical List

3-630

x
w

f
=

-
-

2 1

2

1

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'), the largest
positive number, x, is

x
w

f
=

-2 1

2

See Also
eps | exponentmax | exponentmin | fractionlength | intmax | intmin |
lowerbound | lsb | quantizer | range | realmin | upperbound



 realmin

3-631

realmin
Smallest positive normalized fixed-point value or quantized number

Syntax

x=realmin(a)

x=realmin(q)

Description

x=realmin(a) is the smallest positive real-world value that can be represented in the
data type of fi object a. Anything smaller than x underflows or is an IEEE “denormal”
number.

x=realmin(q) is the smallest positive normal quantized number where q is a
quantizer object. Anything smaller than x underflows or is an IEEE “denormal”
number.

Examples
q = quantizer('float',[6 3]);

x = realmin(q)

x =

    0.2500

More About

Algorithms

If q is a floating-point quantizer object, x
E

min
= 2  where E qmin = exponentmin( )  is the

minimum exponent.



3 Functions — Alphabetical List

3-632

If q is a signed or unsigned fixed-point quantizer object, x f
= =

-
2 e  where f is the

fraction length.

See Also
eps | exponentmax | exponentmin | fractionlength | intmax | intmin |
lowerbound | lsb | range | realmax | upperbound



 reinterpretcast

3-633

reinterpretcast
Convert fixed-point data types without changing underlying data

Syntax

c = reinterpretcast(a, T)

Description

c = reinterpretcast(a, T) converts the input a to the data type specified by
numerictype object T without changing the underlying data. The result is returned in
fi object c.

The input a must be a built-in integer or a fi object with a fixed-point data type. T must
be a numerictype object with a fully specified fixed-point data type. The word length of
inputs a and T must be the same.

The reinterpretcast function differs from the MATLAB typecast and cast
functions in that it only operates on fi objects and built-in integers, and it does not allow
the word length of the input to change.

Examples

In the following example, a is a signed fi object with a word length of 8 bits and a
fraction length of 7 bits. The reinterpretcast function converts a into an unsigned fi
object c with a word length of 8 bits and a fraction length of 0 bits. The real-world values
of a and c are different, but their binary representations are the same.

 a = fi([-1 pi/4], 1, 8, 7)

 T = numerictype(0, 8, 0);

 c = reinterpretcast(a, T)

a =

 

   -1.0000    0.7891

          DataTypeMode: Fixed-point: binary point scaling



3 Functions — Alphabetical List

3-634

            Signedness: Signed

            WordLength: 8

        FractionLength: 7

 

c =

 

   128   101

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 8

        FractionLength: 0

To verify that the underlying data has not changed, compare the binary representations
of a and c:

binary_a = bin(a)

binary_c = bin(c)

binary_a =

10000000   01100101

binary_c =

10000000   01100101

See Also
cast | fi | numerictype | typecast



 removefimath

3-635

removefimath
Remove fimath object from fi object

Syntax

y = removefimath(x)

Description

y = removefimath(x) returns a fi object y with x’s numerictype and value, and
no fimath object attached. You can use this function as y = removefimath(y), which
gives you localized control over the fimath settings. This function also is useful for
preventing errors about embedded.fimath of both operands needing to be equal.

Examples

Remove fimath Object from fi Object

This example shows how to define a fi object, define a fimath object, attach the fimath
object to the fi object and then, remove the attached fimath object.

a = fi(pi)

f = fimath('RoundingMethod','Floor','OverflowAction','Wrap');

a = setfimath(a,f)

b = removefimath(a)

a =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

 

a =

 



3 Functions — Alphabetical List

3-636

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

        RoundingMethod: Floor

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

 

b =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

Set and Remove fimath for Code Generation

Use the pattern x = setfimath(x,f) and y = removefimath(y) to insulate
variables from fimath settings outside the function. This pattern does not create copies
of the data in generated code.

function y = fixed_point_32bit_KeepLSB_plus_example(a,b)

   f = fimath('OverflowAction','Wrap',...

      'RoundingMethod','Floor',...

      'SumMode','KeepLSB',...

      'SumWordLength',32);

   a = setfimath(a,f);

   b = setfimath(b,f);

   y = a + b;

   y = removefimath(y);

end

If you have the MATLAB Coder product, you can generate C code. This example
generates C code on a computer with 32-bit, native integer type.

a = fi(0,1,16,15);

b = fi(0,1,16,15);

codegen -config:lib  fixed_point_32bit_KeepLSB_plus_example...

       -args {a,b} -launchreport



 removefimath

3-637

     

int fixed_point_32bit_KeepLSB_plus_example(short a, short b)

{

  return a + b;

}

Input Arguments

x — Input data
fi object | built-in integer | double | single

Input data, specified as a fi object or built-in integer, from which to copy the data type
and value to the output. x must be a fi object or an integer data type (int8, int16,
int32, int64, uint8, uint16, uint32, or uint64). If x is not a fi object or integer data
type, then y = x.

Output Arguments

y — Output fi object
fi object | built-in integer | double | single

Output fi object, returned as a fi object with no fimath object attached. The data type
and value of the output match the input. If the input, x, is not a fi object y = x.

See Also
fi | fimath | setfimath



3 Functions — Alphabetical List

3-638

repmat
Replicate and tile array

Description

This function accepts fi objects as inputs.

Refer to the MATLAB repmat reference page for more information.



 rescale

3-639

rescale
Change scaling of fi object

Syntax
b = rescale(a, fractionlength)

b = rescale(a, slope, bias)

b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)

b = rescale(a, ..., PropertyName, PropertyValue, ...)

Description

The rescale function acts similarly to the fi copy function with the following
exceptions:

• The fi copy constructor preserves the real-world value, while rescale preserves the
stored integer value.

• rescale does not allow the Signed and WordLength properties to be changed.

Examples

In the following example, fi object a is rescaled to create fi object b. The real-world
values of a and b are different, while their stored integer values are the same:

p = fipref('FimathDisplay','none',...

  'NumericTypeDisplay','short');

a = fi(10,1,8,3) 

a =

 

    10

      s8,3

 

b = rescale(a,1) 



3 Functions — Alphabetical List

3-640

b =

 

    40

      s8,1

 

stored_integer_a = storedInteger(a);

stored_integer_b = storedInteger(b);

isequal(stored_integer_a, stored_integer_b)

ans =

1

See Also
fi



 reset

3-641

reset
Reset objects to initial conditions

Syntax

reset(P)

reset(q)

Description

reset(P) resets the fipref object P to its initial conditions.

reset(q) resets the following quantizer object properties to their initial conditions:

• minlog

• maxlog

• noverflows

• nunderflows

• noperations

See Also
resetlog



3 Functions — Alphabetical List

3-642

resetglobalfimath
Set global fimath to MATLAB factory default

Syntax

resetglobalfimath

Description

resetglobalfimath sets the global fimath to the MATLAB factory default in your
current MATLAB session. The MATLAB factory default has the following properties:

      RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: FullPrecision

Examples

In this example, you create your own fimath object F and set it as the global fimath.
Then, using the resetglobalfimath command, reset the global fimath to the MATLAB
factory default setting.

F = fimath('RoundingMethod','Floor','OverflowAction','Wrap');

globalfimath(F);

F1 = fimath 

a = fi(pi) 

F1 =

 

        RoundingMethod: Floor

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

 



 resetglobalfimath

3-643

a =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

Now, set the global fimath back to the factory default setting using
resetglobalfimath:

resetglobalfimath;

F2 = fimath 

a = fi(pi) 

F2 =

 

      RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: FullPrecision 

a =

 

    3.1416

       DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

You've now set the global fimath in your current MATLAB session back to the factory
default setting. To use the factory default setting of the global fimath in future MATLAB
sessions, you must use the removeglobalfimathpref command.

Alternatives

reset(G) — If G is a handle to the global fimath, reset(G) is equivalent to using the
resetglobalfimath command.



3 Functions — Alphabetical List

3-644

See Also
fimath | globalfimath | removeglobalfimathpref



 removeglobalfimathpref

3-645

removeglobalfimathpref
Remove global fimath preference

Syntax

removeglobalfimathpref

Description

removeglobalfimathpref removes your global fimath from the MATLAB preferences.
Once you remove the global fimath from your preferences, you cannot save it to them
again. It is best practice to remove global fimath from the MATLAB preferences so that
you start each MATLAB session using the default fimath settings.

The removeglobalfimathpref function does not change the global fimath for your
current MATLAB session. To revert back to the factory default setting of the global
fimath in your current MATLAB session, use the resetglobalfimath command.

Examples

Removing Your Global fimath from the MATLAB Preferences

Typing

removeglobalfimathpref;

at the MATLAB command line removes your global fimath from the MATLAB
preferences. Using the removeglobalfimathpref function allows you to:

• Continue using your global fimath in the current MATLAB session
• Use the MATLAB factory default setting of the global fimath in all future MATLAB

sessions

To revert back to the MATLAB factory default setting of the global fimath in both your
current and future MATLAB sessions, use both the resetglobalfimath and the
removeglobalfimathpref commands:



3 Functions — Alphabetical List

3-646

resetglobalfimath;

removeglobalfimath;

See Also
fimath | globalfimath | resetglobalfimath



 resetlog

3-647

resetlog
Clear log for fi or quantizer object

Syntax

resetlog(a)

resetlog(q)

Description

resetlog(a) clears the log for fi object a.

resetlog(q) clears the log for quantizer object q.

Turn logging on or off by setting the fipref property LoggingMode.

See Also
fipref | maxlog | minlog | noperations | noverflows | nunderflows | reset



3 Functions — Alphabetical List

3-648

reshape
Reshape array

Description

This function accepts fi objects as inputs.

Refer to the MATLAB reshape reference page for more information.



 rgbplot

3-649

rgbplot
Plot colormap

Description

This function accepts fi objects as inputs.

Refer to the MATLAB rgbplot reference page for more information.



3 Functions — Alphabetical List

3-650

ribbon
Create ribbon plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ribbon reference page for more information.



 rose

3-651

rose
Create angle histogram

Description

This function accepts fi objects as inputs.

Refer to the MATLAB rose reference page for more information.



3 Functions — Alphabetical List

3-652

rot90
Rotate array 90 degrees

Description

This function accepts fi objects as inputs.

Refer to the MATLAB rot90 reference page for more information.



 round

3-653

round

Round fi object toward nearest integer or round input data using quantizer object

Syntax

y = round(a)

y = round(q,x)

Description

y = round(a) rounds fi object a to the nearest integer. In the case of a tie, round
rounds values to the nearest integer with greater absolute value. The rounded value is
returned in fi object y.

y and a have the same fimath object and DataType property.

When the DataType of a is single, double, or boolean, the numerictype of y is the
same as that of a.

When the fraction length of a is zero or negative, a is already an integer, and the
numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0, its sign is the
same as that of a, and its word length is the difference between the word length and the
fraction length of a, plus one bit. If a is signed, then the minimum word length of y is 2.
If a is unsigned, then the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded independently.

round does not support fi objects with nontrivial slope and bias scaling. Slope and bias
scaling is trivial when the slope is an integer power of 2 and the bias is 0.

y = round(q,x) uses the RoundingMethod and FractionLength settings of q to
round the numeric data x, but does not check for overflows during the operation. Input x
must be a builtin numeric variable. Use the cast function to work with fi objects.



3 Functions — Alphabetical List

3-654

Examples

Example 1

The following example demonstrates how the round function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi, 1, 8, 3) 

a =

 

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

y = round(a) 

y =

 

     3

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 6

        FractionLength: 0

Example 2

The following example demonstrates how the round function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12) 

a =

 

    0.0249



 round

3-655

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 12

y = round(a) 

y =

 

     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 2

        FractionLength: 0

Example 3

The functions convergent, nearest and round differ in the way they treat values
whose least significant digit is 5:

• The convergent function rounds ties to the nearest even integer
• The nearest function rounds ties to the nearest integer toward positive infinity
• The round function rounds ties to the nearest integer with greater absolute value

The following table illustrates these differences for a given fi object a.

a convergent(a) nearest(a) round(a)

–3.5 –4 –3 –4
–2.5 –2 –2 –3
–1.5 –2 –1 –2
–0.5 0 0 –1
0.5 0 1 1
1.5 2 2 2
2.5 2 3 3
3.5 4 4 4



3 Functions — Alphabetical List

3-656

Quantize an input

Create a quantizer object, and use it to quantize input data. The quantizer object applies
its properties to the input data to return quantized output.

q = quantizer('fixed', 'convergent', 'wrap', [3 2]);

x = (-2:eps(q)/4:2)';

y = round(q,x);

plot(x,[x,y],'.-');

axis square;



 round

3-657

Applying quantizer object q to the data resulted in a staircase-shape output plot. Linear
data input results in output where y shows distinct quantization levels.

See Also
ceil | convergent | fix | floor | nearest | quantize | quantizer



3 Functions — Alphabetical List

3-658

savefipref
Save fi preferences for next MATLAB session

Syntax

savefipref

Description

savefipref saves the settings of the current fipref object for the next MATLAB
session.

See Also
fipref



 scatter

3-659

scatter
Create scatter or bubble plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB scatter reference page for more information.



3 Functions — Alphabetical List

3-660

scatter3
Create 3-D scatter or bubble plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB scatter3 reference page for more information.



 sdec

3-661

sdec
Signed decimal representation of stored integer of fi object

Syntax

sdec(a)

Description

Fixed-point numbers can be represented as

real world value stored integerfraction length
- = ¥

-
2

or, equivalently as

real world value slope stored integer bias- = ¥ +( )

The stored integer is the raw binary number, in which the binary point is assumed to be
at the far right of the word.

sdec(a) returns the stored integer of fi object a in signed decimal format as a string.

Examples

The code

a = fi([-1 1],1,8,7);

sdec(a)

returns

-128   127

See Also
bin | dec | hex | storedInteger | oct



3 Functions — Alphabetical List

3-662

semilogx
Create semilogarithmic plot with logarithmic x-axis

Description

This function accepts fi objects as inputs.

Refer to the MATLAB semilogx reference page for more information.



 semilogy

3-663

semilogy
Create semilogarithmic plot with logarithmic y-axis

Description

This function accepts fi objects as inputs.

Refer to the MATLAB semilogy reference page for more information.



3 Functions — Alphabetical List

3-664

set
Set or display property values for quantizer objects

Syntax

set(q, PropertyValue1, PropertyValue2,...)

set(q,s)

set(q,pn,pv)

set(q,'PropertyName1',PropertyValue1,'PropertyName2',

PropertyValue2,...)

q.PropertyName = Value

s = set(q)

Description

set(q, PropertyValue1, PropertyValue2,...) sets the properties of quantizer
object q. If two property values conflict, the last value in the list is the one that is set.

set(q,s), where s is a structure whose field names are object property names, sets the
properties named in each field name with the values contained in the structure.

set(q,pn,pv) sets the named properties specified in the cell array of strings pn to the
corresponding values in the cell array pv.

set(q,'PropertyName1',PropertyValue1,'PropertyName2',

PropertyValue2,...) sets multiple property values with a single statement.

Note You can use property name/property value string pairs, structures, and property
name/property value cell array pairs in the same call to set.

q.PropertyName = Value uses dot notation to set property PropertyName to Value.



 set

3-665

set(q) displays the possible values for all properties of quantizer object q.

s = set(q) returns a structure containing the possible values for the properties of
quantizer object q.

Note The set function operates on quantizer objects. To learn about setting the
properties of other objects, see properties of fi, fimath, fipref, and numerictype
objects.

See Also
get



3 Functions — Alphabetical List

3-666

setfimath
Attach fimath object to fi object

Syntax

y = setfimath(x,f)

Description

y = setfimath(x,f) returns a fi object, y, with x’s numerictype and value, and
attached fimath object, f. This function and the related removefimath function are
useful for preventing errors about embedded.fimath of both operands needing to be
equal.

The y = setfimath(x,f) syntax does not modify the input, x. To modify x, use
x = setfimath(x,f). If you use setfimath in an expression, such as,
a*setfimath(b,f), the fimath object is used in the temporary variable, but b is not
modified.

Examples

Add fimath object to fi Object

Define a fi object, define a fimath object, and use setfimath to attach the fimath
object to the fi object.

Create a fi object without a fimath object.

a = fi(pi)

a =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed



 setfimath

3-667

            WordLength: 16

        FractionLength: 13

Create a fimath object and attach it to the fi object.

f = fimath('OverflowAction','Wrap','RoundingMethod','Floor');

b = setfimath(a,f)

b =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

        RoundingMethod: Floor

        OverflowAction: Wrap

           ProductMode: FullPrecision

               SumMode: FullPrecision

Set and Remove fimath for Code Generation

Use the pattern x = setfimath(x,f) and y = removefimath(y) to insulate
variables from fimath settings outside the function. This pattern does not create copies
of the data in generated code.

function y = fixed_point_32bit_KeepLSB_plus_example(a,b)

   f = fimath('OverflowAction','Wrap',...

      'RoundingMethod','Floor',...

      'SumMode','KeepLSB',...

      'SumWordLength',32);

   a = setfimath(a,f);

   b = setfimath(b,f);

   y = a + b;

   y = removefimath(y);

end

 

If you have the MATLAB Coder product, you can generate C code. This example
generates C code on a computer with 32-bit, native integer type.

a = fi(0,1,16,15);

b = fi(0,1,16,15);



3 Functions — Alphabetical List

3-668

codegen -config:lib  fixed_point_32bit_KeepLSB_plus_example...

       -args {a,b} -launchreport

     

int fixed_point_32bit_KeepLSB_plus_example(short a, short b)

{

  return a + b;

}

Input Arguments

x — Input data
fi object | built-in integer | double | single

Input data, specified as a fi object or built-in integer value, from which to copy the data
type and value to the output. x must be a fi object or an integer data type (int8, int16,
int32, int64, uint8, uint16, uint32, or uint64). Otherwise, the fimath object is not
applied. If x is not a fi object or integer data type, y = x.

f — Input fimath object
fimath object

Input fimath object, specified as an existing fimath object to attach to the output. An
error occurs if f is not a fimath object.

Output Arguments

y — Output fi object
fi object

Output fi object, returned as a fi object with the same data type and value as the x
input. y also has attached fimath object, f. If the input, x, is not a fi object or integer
data type, then y = x.

See Also
fi | fimath | removefimath



 sfi

3-669

sfi
Construct signed fixed-point numeric object

Syntax

a = sfi

a = sfi(v)

a = sfi(v,w)

a = sfi(v,w,f)

a = sfi(v,w,slope,bias)

a = sfi(v,w,slopeadjustmentfactor,fixedexponent,bias)

Description

You can use the sfi constructor function in the following ways:

• a = sfi is the default constructor and returns a signed fi object with no value, 16-
bit word length, and 15-bit fraction length.

• a = sfi(v) returns a signed fixed-point object with value v, 16-bit word length, and
best-precision fraction length.

• a = sfi(v,w) returns a signed fixed-point object with value v, word length w, and
best-precision fraction length.

• a = sfi(v,w,f) returns a signed fixed-point object with value v, word length w, and
fraction length f.

• a = sfi(v,w,slope,bias) returns a signed fixed-point object with value v, word
length w, slope, and bias.

• a = sfi(v,w,slopeadjustmentfactor,fixedexponent,bias) returns a
signed fixed-point object with value v, word length w, slopeadjustmentfactor,
fixedexponent, and bias.

fi objects created by the sfi constructor function have the following general types of
properties:

• “Data Properties” on page 3-353
• “fimath Properties” on page 3-670



3 Functions — Alphabetical List

3-670

• “numerictype Properties” on page 3-355

These properties are described in detail in “fi Object Properties” in the Properties
Reference.

Note: fi objects created by the sfi constructor function have no local fimath.

Data Properties

The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary
• data — Numerical real-world value of a fi object
• dec — Stored integer value of a fi object in decimal
• double — Real-world value of a fi object, stored as a MATLAB double
• hex — Stored integer value of a fi object in hexadecimal
• int — Stored integer value of a fi object, stored in a built-in MATLAB integer data

type. You can also use int8, int16, int32, int64, uint8, uint16, uint32, and
uint64 to get the stored integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

These properties are described in detail in “fi Object Properties”.

fimath Properties

When you create a fi object with the sfi constructor function, that fi object does not
have a local fimath object. You can attach a fimath object to that fi object if you do
not want to use the default fimath settings. For more information, see “fimath Object
Construction” in the Fixed-Point Designer documentation.

• fimath — fixed-point math object

The following fimath properties are always writable and, by transitivity, are also
properties of a fi object.

• CastBeforeSum — Whether both operands are cast to the sum data type before
addition



 sfi

3-671

Note: This property is hidden when the SumMode is set to FullPrecision.
• OverflowAction — Action to take on overflow
• ProductBias — Bias of the product data type
• ProductFixedExponent — Fixed exponent of the product data type
• ProductFractionLength — Fraction length, in bits, of the product data type
• ProductMode — Defines how the product data type is determined
• ProductSlope — Slope of the product data type
• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data

type
• ProductWordLength — Word length, in bits, of the product data type
• RoundingMethod — Rounding method
• SumBias — Bias of the sum data type
• SumFixedExponent — Fixed exponent of the sum data type
• SumFractionLength — Fraction length, in bits, of the sum data type
• SumMode — Defines how the sum data type is determined
• SumSlope — Slope of the sum data type
• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
• SumWordLength — The word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties”.

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a
property of the fi object.

numerictype — Object containing all the data type information of a fi object, Simulink
signal or model parameter

The following numerictype properties are, by transitivity, also properties of a fi object.
The properties of the numerictype object become read only after you create the fi
object. However, you can create a copy of a fi object with new values specified for the
numerictype properties.



3 Functions — Alphabetical List

3-672

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object
• DataTypeMode — Data type and scaling mode of a fi object
• FixedExponent — Fixed-point exponent associated with a fi object
• SlopeAdjustmentFactor — Slope adjustment associated with a fi object
• FractionLength — Fraction length of the stored integer value of a fi object in bits
• Scaling — Fixed-point scaling mode of a fi object
• Signed — Whether a fi object is signed or unsigned
• Signedness — Whether a fi object is signed or unsigned

Note: numerictype objects can have a Signedness of Auto, but all fi objects must
be Signed or Unsigned. If a numerictype object with Auto Signedness is used to
create a fi object, the Signedness property of the fi object automatically defaults to
Signed.

• Slope — Slope associated with a fi object
• WordLength — Word length of the stored integer value of a fi object in bits

For further details on these properties, see “numerictype Object Properties”.

Examples

Note For information about the display format of fi objects, refer to Display Settings.

For examples of casting, see “Cast fi Objects”.

Example 1

For example, the following creates a signed fi object with a value of pi, a word length of
8 bits, and a fraction length of 3 bits:

a = sfi(pi,8,3)

a =

 



 sfi

3-673

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 3

Default fimath properties are associated with a. When a fi object does not have a local
fimath object, no fimath object properties are displayed in its output. To determine
whether a fi object has a local fimath object, use the isfimathlocal function.

isfimathlocal(a)

ans =

     0

A returned value of 0 means the fi object does not have a local fimath object. When the
isfimathlocal function returns a 1, the fi object has a local fimath object.

Example 2

The value v can also be an array:

a = sfi((magic(3)/10),16,12) 

a =

 

    0.8000    0.1001    0.6001

    0.3000    0.5000    0.7000

    0.3999    0.8999    0.2000

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 12

Example 3

If you omit the argument f, it is set automatically to the best precision possible:

a = sfi(pi,8) 

a =



3 Functions — Alphabetical List

3-674

 

    3.1563

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 5

Example 4

If you omit w and f, they are set automatically to 16 bits and the best precision possible,
respectively:

a = sfi(pi) 

a =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 13

See Also
fi | fimath | fipref | isfimathlocal | numerictype | quantizer | ufi



 shiftdata

3-675

shiftdata
Shift data to operate on specified dimension

Syntax

[x,perm,nshifts] = shiftdata(x,dim)

Description

[x,perm,nshifts] = shiftdata(x,dim) shifts data x to permute dimension dim to
the first column using the same permutation as the built-in filter function. The vector
perm returns the permutation vector that is used.

If dim is missing or empty, then the first non-singleton dimension is shifted to the first
column, and the number of shifts is returned in nshifts.

shiftdata is meant to be used in tandem with unshiftdata, which shifts the data
back to its original shape. These functions are useful for creating functions that work
along a certain dimension, like filter, goertzel, sgolayfilt, and sosfilt.

Examples

Example 1

This example shifts x, a 3-x-3 magic square, permuting dimension 2 to the first column.
unshiftdata shifts x back to its original shape.

1. Create a 3-x-3 magic square:

x = fi(magic(3))

 

x =

 

     8     1     6

     3     5     7



3 Functions — Alphabetical List

3-676

     4     9     2

2. Shift the matrix x to work along the second dimension:

[x,perm,nshifts] = shiftdata(x,2) 

The permutation vector, perm, and the number of shifts, nshifts, are returned along
with the shifted matrix, x:

x =

 

     8     3     4

     1     5     9

     6     7     2

perm =

     2     1

nshifts =

     []

3. Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 

     8     1     6

     3     5     7

     4     9     2

Example 2

This example shows how shiftdata and unshiftdata work when you define dim as
empty.

1. Define x as a row vector:



 shiftdata

3-677

x = 1:5 

x =

     1     2     3     4     5

2. Define dim as empty to shift the first non-singleton dimension of x to the first column:

[x,perm,nshifts] = shiftdata(x,[])

x is returned as a column vector, along with perm, the permutation vector, and nshifts,
the number of shifts:

x =

     1

     2

     3

     4

     5

perm =

     []

nshifts =

     1

3. Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)   

y =

     1     2     3     4     5

See Also
permute | shiftdim | unshiftdata



3 Functions — Alphabetical List

3-678

shiftdim
Shift dimensions

Description

This function accepts fi objects as inputs.

Refer to the MATLAB shiftdim reference page for more information.



 showfixptsimerrors

3-679

showfixptsimerrors
Show overflows from most recent fixed-point simulation

Note: showfixptsimerrors will be removed in a future release. Use fxptdlg instead.

Syntax

showfixptsimerrors

Description

The showfixptsimerrors script displays any overflows from the most recent fixed-
point simulation. This information is also visible in the Fixed-Point Tool.

See Also
autofixexp | fxptdlg



3 Functions — Alphabetical List

3-680

showfixptsimranges
Show logged maximum values, minimum values, and overflow data from fixed-point
simulation

Note: showfixptsimranges will be removed in a future release. Use fxptdlg instead.

Syntax

showfixptsimranges

showfixptsimranges(action)

Description

showfixptsimranges displays the logged maximum values, minimum values, and
overflow data from the most recent fixed-point simulation in the MATLAB Command
Window.

showfixptsimranges(action) stores the logged maximum values, minimum values,
and overflow data from the most recent fixed-point simulation in the workspace variable
FixPtSimRanges. If action is 'verbose', the logged data also appears in the
MATLAB Command Window. If action is 'quiet', no data appears.

See Also
autofixexp | fxptdlg



 showInstrumentationResults

3-681

showInstrumentationResults

Results logged by instrumented, compiled C code function

Syntax

showInstrumentationResults('mex_fcn')

showInstrumentationResults ('mex_fcn' '-options')

showInstrumentationResults mex_fcn

showInstrumentationResults mex_fcn -options

Description

showInstrumentationResults('mex_fcn') opens the Code Generation Report,
showing results from calling the instrumented MEX function mex_fcn. Hovering over
variables and expressions in the report displays the logged information. The logged
information includes minimum and maximum values, proposed fraction or word lengths,
percent of current range, and whether the value is always a whole number, depending on
which options you specify. If you specify to include them in the buildInstrumentedMex
function, histograms are also included. The same information is displayed in a summary
table in the Variables tab.

showInstrumentationResults ('mex_fcn' '-options') specifies options for the
instrumentation results section of the Code Generation Report.

showInstrumentationResults mex_fcn and showInstrumentationResults
mex_fcn -options  are alternative syntaxes for opening the Code Generation Report.

When you call showInstrumentationResults, a file named
instrumentation/mex_fcn/html/index.html is created. mex_fcn is the name of the
corresponding instrumented MEX function. Selecting this file opens a web-based version
of the Code Generation Report. To open this file from within MATLAB, right-click on the
file and select Open Outside MATLAB. showInstrumentationResults returns an
error if the instrumented mex_fcn has not yet been called.



3 Functions — Alphabetical List

3-682

Input Arguments

mex_fcn

Instrumented MEX function created using buildInstrumentedMex.

options

Instrumentation results options.

-defaultDT T Default data type to propose for double or
single data type inputs, where T is either a
numerictype object or one of these strings:
remainFloat, double, single, int8,
int16, int32, int64, uint8, uint16,
uint32, or uint64. If you specify an
int or uint, the signedness and word
length are that int or uint value and a
fraction length is proposed. The default is
remainFloat, which does not propose any
data types.

-nocode Do not display MATLAB code in the
printable report. Display only the tables
of logged variables. This option only has
effect in combination with the -printable
option.

-optimizeWholeNumbers Optimize the word length of variables
whose simulation min/max logs indicate
that they are always whole numbers.

-percentSafetyMargin N Safety margin for simulation min/max,
where N is a percent value.

-printable Create and open a printable HTML report.
The report opens in the system browser.

-proposeFL Propose fraction lengths for specified word
lengths.

-proposeWL Propose word lengths for specified fraction
lengths.



 showInstrumentationResults

3-683

Examples

Generate an instrumented MEX function, then run a test bench. Call
showInstrumentationResults to open the Code Generation Report.

Note: The logged results from showInstrumentationResults are an accumulation
of all previous calls to the instrumented MEX function. To clear the log, see
clearInstrumentationResults.

1 Create a temporary directory, then import an example function from Fixed-Point
Designer.

tempdirObj=fidemo.fiTempdir('showInstrumentationResults')

copyfile(fullfile(matlabroot,'toolbox','fixedpoint',...

   'fidemos','fi_m_radix2fft_withscaling.m'),...

   'testfft.m','f')

2 Define prototype input arguments.

T = numerictype('DataType','ScaledDouble','Scaling',...

   'Unspecified');

n = 128;

x = complex(fi(zeros(n,1),T));

W = coder.Constant(fi(fidemo.fi_radix2twiddles(n),T));

3 Generate an instrumented MEX function. Use the -o option to specify the MEX
function name.

buildInstrumentedMex testfft -o testfft_instrumented...

   -args {x,W} -histogram

4 Run a test bench to record instrumentation results. Call
showInstrumentationResults to open the Code Generation Report. View the
simulation minimum and maximum values, proposed fraction length, percent of
current range, and whole number status by hovering over a variable in the report.

for i=1:20

   x(:) = 2*rand(size(x))-1;

   y = testfft_instrumented(x);

end



3 Functions — Alphabetical List

3-684

showInstrumentationResults testfft_instrumented...

   -proposeFL -percentSafetyMargin 10



 showInstrumentationResults

3-685

1 View the histogram for a variable by clicking  in the Variables tab.

For information on the figure, refer to the NumericTypeScope reference page.
2 Close the histogram display and then, clear the results log.

clearInstrumentationResults testfft_instrumented

3 Clear the MEX function, then delete temporary files.



3 Functions — Alphabetical List

3-686

clear testfft_instrumented;

tempdirObj.cleanUp;

See Also
fiaccel | clearInstrumentationResults | buildInstrumentedMex |
NumericTypeScope | codegen | mex



 sin

3-687

sin
Sine of fixed-point values

Syntax
y = sin(theta)

Description
y = sin(theta) returns the sine of fi input theta using a table-lookup algorithm.

Input Arguments
theta

theta can be a real-valued, signed or unsigned scalar, vector, matrix, or N-dimensional
array containing the fixed-point angle values in radians. Valid data types of theta are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Output Arguments
y

y is the sine of theta. y is a signed, fixed-point number in the range [-1,1]. It has a 16-bit
word length and 15-bit fraction length (numerictype(1,16,15)) This sine calculation
is accurate only to within the top 16 most-significant bits of the input.

Examples
Calculate the sine of fixed-point input values.



3 Functions — Alphabetical List

3-688

theta = fi([-pi/2,-pi/3,-pi/4 0, pi/4,pi/3,pi/2])

theta =

 

theta =

 

   -1.5708  -1.0472  -0.7854  0  0.7854  1.0472  1.5708

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 14  

y = sin(theta)

 

y =

 

   -1.0000  -0.8661  -0.7072   0  0.7070  0.8659  0.9999

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

More About

Sine

The sine of angle Θ is defined as

sin( )q

q q

=
-

-
e e

i

i i

2

Algorithms

The sin function computes the sine of fixed-point input using an 8-bit lookup table as
follows:

1 Cast the input to a 16-bit stored integer value, using the 16 most-significant bits.
2 Perform a modulo 2π, so the input is in the range [0,2π) radians.



 sin

3-689

3 Compute the table index, based on the 16-bit stored integer value, normalized to the
full uint16 range.

4 Use the 8 most-significant bits to obtain the first value from the table.
5 Use the next-greater table value as the second value.
6 Use the 8 least-significant bits to interpolate between the first and second values,

using nearest-neighbor linear interpolation.

fimath Propagation Rules

The sin function ignores and discards any fimath attached to the input, theta. The
output, y, is always associated with the default fimath.

See Also
angle | atan2 | cordiccos | cordicsin | cos | sin



3 Functions — Alphabetical List

3-690

sign
Perform signum function on array

Syntax

c = sign(a)

Description

c = sign(a) returns an array c the same size as a, where each element of c is

• 1 if the corresponding element of a is greater than zero
• 0 if the corresponding element of a is zero
• -1 if the corresponding element of a is less than zero

The elements of c are of data type int8.

sign does not support complex fi inputs.



 single

3-691

single
Single-precision floating-point real-world value of fi object

Syntax

single(a)

Description

Fixed-point numbers can be represented as

real world value stored integerfraction length
- = ¥

-
2

or, equivalently as

real world value slope stored integer bias- = ¥ +( )

single(a) returns the real-world value of a fi object in single-precision floating point.

See Also
double



3 Functions — Alphabetical List

3-692

size
Array dimensions

Description

This function accepts fi objects as inputs.

Refer to the MATLAB size reference page for more information.



 slice

3-693

slice
Create volumetric slice plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB slice reference page for more information.



3 Functions — Alphabetical List

3-694

sort
Sort elements of real-valued fi object in ascending or descending order

Description

This function accepts fi objects as inputs.

sort does not support complex fixed-point inputs. Refer to the MATLAB sort reference
page for more information.



 spy

3-695

spy
Visualize sparsity pattern

Description

This function accepts fi objects as inputs.

Refer to the MATLAB spy reference page for more information.



3 Functions — Alphabetical List

3-696

sqrt
Square root of fi object

Syntax

c = sqrt(a)

c = sqrt(a,T)

c = sqrt(a,F)

c = sqrt(a,T,F)

Description

This function computes the square root of a fi object using a bisection algorithm.

c = sqrt(a) returns the square root of fi object a. Intermediate quantities are
calculated using the fimath associated with a. The numerictype object of c is
determined automatically for you using an internal rule.

c = sqrt(a,T) returns the square root of fi object a with numerictype object T.
Intermediate quantities are calculated using the fimath associated with a. See “Data
Type Propagation Rules” on page 3-697.

c = sqrt(a,F) returns the square root of fi object a. Intermediate quantities are
calculated using the fimath object F. The numerictype object of c is determined
automatically for you using an internal rule. When a is a built-in double or single data
type, this syntax is equivalent to c = sqrt(a) and the fimath object F is ignored.

c = sqrt(a,T,F) returns the square root fi object a with numerictype object T.
Intermediate quantities are also calculated using the fimath object F. See “Data Type
Propagation Rules” on page 3-697.

sqrt does not support complex, negative-valued, or [Slope Bias] inputs.

Internal Rule

For syntaxes where the numerictype object of the output is not specified as an input to
the sqrt function, it is automatically calculated according to the following internal rule:



 sqrt

3-697

sign signc a=

WL
WL

c
a

= ceil( )
2

FL WL
WL FL

c c
a a

= -

-

ceil( )
2

Data Type Propagation Rules

For syntaxes for which you specify a numerictype object T, the sqrt function follows
the data type propagation rules listed in the following table. In general, these rules can
be summarized as “floating-point data types are propagated.” This allows you to write
code that can be used with both fixed-point and floating-point inputs.

Data Type of Input fi Object a Data Type of numerictype
object T

Data Type of Output c

Built-in double Any Built-in double
Built-in single Any Built-in single
fi Fixed fi Fixed Data type of numerictype

object T
fi ScaledDouble fi Fixed ScaledDouble with

properties of numerictype
object T

fi double fi Fixed fi double
fi single fi Fixed fi single
Any fi data type fi double fi double
Any fi data type fi single fi single



3 Functions — Alphabetical List

3-698

squeeze
Remove singleton dimensions

Description

This function accepts fi objects as inputs.

Refer to the MATLAB squeeze reference page for more information.



 stairs

3-699

stairs
Create stairstep graph

Description

This function accepts fi objects as inputs.

Refer to the MATLAB stairs reference page for more information.



3 Functions — Alphabetical List

3-700

stem
Plot discrete sequence data

Description

This function accepts fi objects as inputs.

Refer to the MATLAB stem reference page for more information.



 stem3

3-701

stem3
Plot 3-D discrete sequence data

Description

This function accepts fi objects as inputs.

Refer to the MATLAB stem3 reference page for more information.



3 Functions — Alphabetical List

3-702

storedInteger
Stored integer value of fi object

Syntax

st_int = storedInteger(f)

Description

st_int = storedInteger(f) returns the stored integer value of fi object f.

Fixed-point numbers can be represented as

real world value stored integerfraction length
- = ¥

-
2

or, equivalently as

real world value slope stored integer bias- = ¥ +( )

The stored integer is the raw binary number, in which the binary point is assumed to be
at the far right of the word.

Input Arguments

f — Fixed-point numeric object
fi object

Fixed-point numeric object from which you want to get the stored integer value.

Output Arguments

st_int — Stored integer value of fi object
integer



 storedInteger

3-703

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

The returned stored integer value is the smallest built-in integer data type in which the
stored integer value f fits. Signed fi values return stored integers of type int8, int16,
int32, or int64. Unsigned fi values return stored integers of type uint8, uint16,
uint32, or uint64. The return type is determined based on the stored integer word
length (WL):

• WL ≤ 8 bits, the return type is int8 or uint8.
• 8 bits < WL ≤ 16 bits, the return type is int16 or uint16.
• 16 bits < WL ≤ 32 bits, the return type is int32 or uint32.
• 32 bits < WL ≤ 64 bits, the return type is int64 or uint64.

Note When the word length is greater than 64 bits, the storedInteger function errors.
For bit-true integer representation of very large word lengths, use bin, oct, dec, hex, or
sdec.

Examples

Stored Integer Value of fi Objects

Find the stored integer values for two fi objects. Use the class function to display the
stored integer data types.

x = fi([0.2 0.3 0.5 0.3 0.2]);

in_x = storedInteger(x);

c1 = class(in_x)

numtp = numerictype('WordLength',17);

x_n = fi([0.2 0.3 0.5 0.3 0.2],'numerictype',numtp);

in_xn = storedInteger(x_n);

c2 = class(in_xn)

See Also
int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
storedIntegerToDouble



3 Functions — Alphabetical List

3-704

storedIntegerToDouble
Convert stored integer value of fi object to built-in double value

Syntax

d = storedIntegerToDouble(f)

Description

d = storedIntegerToDouble(f) converts the stored integer value of fi object, f, to a
double-precision floating-point value, d.

If the input word length is greater than 52 bits, a quantization error may occur. INF is
returned if the stored integer value of the input fi object is outside the representable
range of built-in double values.

Input Arguments

f

fi object

Examples

Convert Stored Integer Value of fi Object to Double-Precision Value

Convert the stored integer of a fi value to a double-precision value. Use the class
function to verify that the stored integer is a double-precision value.

f = fi(pi,1,16,12);

d = storedIntegerToDouble(f);

dtype = class(d)

See Also
class | fi | storedInteger



 streamribbon

3-705

streamribbon
Create 3-D stream ribbon plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB streamribbon reference page for more information.



3 Functions — Alphabetical List

3-706

streamslice
Draw streamlines in slice planes

Description

This function accepts fi objects as inputs.

Refer to the MATLAB streamslice reference page for more information.



 streamtube

3-707

streamtube
Create 3-D stream tube plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB streamtube reference page for more information.



3 Functions — Alphabetical List

3-708

stripscaling
Stored integer of fi object

Syntax

I = stripscaling(a)

Description

I = stripscaling(a) returns the stored integer of a as a fi object with binary-point
scaling, zero fraction length and the same word length and sign as a.

Examples

Stripscaling is useful for converting the value of a fi object to its stored integer value.

fipref('NumericTypeDisplay','short', ...

       'FimathDisplay','none');

format long g

a = fi(0.1,true,48,47) 

a =

 

         0.100000000000001

      s48,47

b = stripscaling(a) 

b =

 

            14073748835533

      s48,0

bin(a)

ans =

000011001100110011001100110011001100110011001101



 stripscaling

3-709

bin(b)

ans =

000011001100110011001100110011001100110011001101

Notice that the stored integer values of a and b are identical, while their real-world
values are different.



3 Functions — Alphabetical List

3-710

sub
Subtract two objects using fimath object

Syntax

c = sub(F,a,b)

Description

c = sub(F,a,b) subtracts objects a and b using fimath object F. This is helpful
in cases when you want to override the fimath objects of a and b, or if the fimath
properties associated with a and b are different. The output fi object c has no local
fimath.

a and b must both be fi objects and must have the same dimensions unless one is a
scalar. If either a or b is scalar, then c has the dimensions of the nonscalar object.

Examples

In this example, c is the 32-bit difference of a and b with fraction length 16.

a = fi(pi);

b = fi(exp(1));

F = fimath('SumMode','SpecifyPrecision',...

  'SumWordLength',32,'SumFractionLength',16);

c = sub(F, a, b) 

c =

 

    0.4233

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 32

        FractionLength: 16



 sub

3-711

More About

Algorithms

c = sub(F,a,b) is similar to

a.fimath = F;

b.fimath = F;

c = a - b

c =

    0.4233

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 32

        FractionLength: 16

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: SpecifyPrecision

         SumWordLength: 32

     SumFractionLength: 16

         CastBeforeSum: true

but not identical. When you use sub, the fimath properties of a and b are not modified,
and the output fi object c has no local fimath. When you use the syntax c = a - b,
where a and b have their own fimath objects, the output fi object c gets assigned the
same fimath object as inputs a and b. See “fimath Rules for Fixed-Point Arithmetic” in
the Fixed-Point Designer User's Guide for more information.

See Also
add | fi | divide | fimath | mpy | mrdivide | numerictype | rdivide



3 Functions — Alphabetical List

3-712

subsasgn
Subscripted assignment

Syntax

a(I) = b

a(I,J) = b

a(I,:) = b

a(:,I) = b

a(I,J,K,...) = b

a = subsasgn(a,S,b)

Description

a(I) = b assigns the values of b into the elements of a specified by the subscript vector
I. b must have the same number of elements as I or be a scalar value.

a(I,J) = b assigns the values of b into the elements of the rectangular submatrix of a
specified by the subscript vectors I and J. b must have LENGTH(I) rows and LENGTH(J)
columns.

A colon used as a subscript, as in a(I,:) = b or a(:,I) = b indicates the entire
column or row.

For multidimensional arrays, a(I,J,K,...) = b assigns b to the specified elements of
a. b must be length(I)-by-length(J)-by-length(K)-... or be shiftable to that size by
adding or removing singleton dimensions.

a = subsasgn(a,S,b) is called for the syntax a(i)=b, a{i}=b, or a.i=b when a is an
object. S is a structure array with the following fields:

• type — String containing '()', '{}', or '.' specifying the subscript type
• subs — Cell array or string containing the actual subscripts

For instance, the syntax a(1:2,:) = b calls a=subsasgn(a,S,b) where S is a 1-by-1
structure with S.type='()' and S.subs = {1:2,':'}. A colon used as a subscript is
passed as the string ':'.



 subsasgn

3-713

You can use fixed-point assignment, for example a(:) = b, to cast a value with one
numerictype object into another numerictype object. This subscripted assignment
statement assigns the value of b into a while keeping the numerictype object of a.
Subscripted assignment works the same way for integer data types.

Examples

Cast a 16-bit Number into an 8-bit Number

For fi objects a and b, there is a difference between

a = b

and

a(:) = b

In the first case, a = b replaces a with b while a assumes the value, numerictype
object and fimath object associated with b . In the second case, a(:) = b assigns the
value of b into a while keeping the numerictype object of a . You can use this to cast a
value with one numerictype object into another numerictype object.

For example, cast a 16-bit number into an 8-bit number.

a = fi(0, 1, 8, 7)

a = 

     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 7

b = fi(pi/4, 1, 16, 15)

b = 

    0.7854



3 Functions — Alphabetical List

3-714

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 15

a(:) = b

a = 

    0.7891

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 8

        FractionLength: 7

Emulate a 40-bit Accumulator of a DSP

This example defines a variable acc to emulate a 40-bit accumulator of a DSP. The
products and sums in this example are assigned into the accumulator using the syntax
acc(1)=... Assigning values into the accumulator is like storing a value in a register.
To begin, turn the logging mode on and define the variables. In this example, n is the
number of points in the input data x and output data y , and t represents time. The
remaining variables are all defined as fi objects. The input data x is a high-frequency
sinusoid added to a low-frequency sinusoid.

fipref('LoggingMode', 'on');

n = 100;

t = (0:n-1)/n;

x = fi(sin(2*pi*t) + 0.2*cos(2*pi*50*t));

b = fi([.5 .5]);

y = fi(zeros(size(x)), numerictype(x));

acc = fi(0.0, true, 40, 30);

The following loop takees a running average of the input x using the coefficients in b
. Notice that acc is assigned into acc(1)=... versus using acc=... , which would
overwrite and change the data type of acc .

for k = 2:n

    acc(1) = b(1)*x(k);

    acc(1) = acc + b(2)*x(k-1);

    y(k) = acc;

end



 subsasgn

3-715

By averaging every other sample, the loop shown above passes the low-frequency
sinusoid through and attenuates the high-frequency sinusoid.

plot(t,x,'x-',t,y,'o-')

legend('input data x','output data y')

The log report shows the minimum and maximum logged values and ranges of the
variables used. Because acc is assigned into, rather than over written, these logs reflect
the accumulated minimum and maximum values.

logreport(x, y, b, acc)

                     minlog         maxlog     lowerbound     upperbound     noverflows    nunderflows

           x      -1.200012       1.197998             -2       1.999939              0              0



3 Functions — Alphabetical List

3-716

           y     -0.9990234      0.9990234             -2       1.999939              0              0

           b            0.5            0.5             -1      0.9999695              0              0

         acc     -0.9990234      0.9989929           -512            512              0              0

Display acc to verify that its data type did not change.

acc

acc = 

   -0.0941

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 40

        FractionLength: 30

Reset the fipref object to restore its default values.

reset(fipref)

• “Cast fi Objects”

See Also
subsref



 subsref

3-717

subsref
Subscripted reference

Description

This function accepts fi objects as inputs.

Refer to the MATLAB subsref reference page for more information.



3 Functions — Alphabetical List

3-718

sum

Sum of array elements

Syntax

S= sum (A)

S= sum ( A, dim)

S = sum ( ___  , type )

Description

S= sum (A) returns the sum along different dimensions of the fi array A.

If A is a vector, sum(A) returns the sum of the elements.

If A is a matrix, sum(A) treats the columns of A as vectors, returning a row vector of the
sums of each column.

If A is a multidimensional array, sum(A) treats the values along the first non-singleton
dimension as vectors, returning an array of row vectors.

S= sum ( A, dim) sums along the dimension dim of A.

S = sum ( ___  , type ) returns an array in the class specified by type, using any of
the input arguments in the previous syntaxes. type can be 'double' or 'native'.

• If type is 'double', then sum returns a double-precision array, regardless of the
input data type.

• If type is 'native', then sum returns an array with the same class of input array A.

The fimath object is used in the calculation of the sum. If SumMode is FullPrecision,
KeepLSB, or KeepMSB, then the number of integer bits of growth for sum(A) is
ceil(log2(size(A,dim))).

sum does not support fi objects of data type Boolean.



 sum

3-719

Examples

Sum of Vector Elements

Create a fi vector, and specify fimath properties in the constructor.

A=fi([1 2 5 8 5], 'SumMode', 'KeepLSB', 'SumWordLength', 32)

A = 

     1     2     5     8     5

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: KeepLSB

         SumWordLength: 32

         CastBeforeSum: true

Compute the sum of the elements of A.

S=sum(A)

S = 

    21

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 32

        FractionLength: 11

        RoundingMethod: Nearest

        OverflowAction: Saturate

           ProductMode: FullPrecision

               SumMode: KeepLSB

         SumWordLength: 32

         CastBeforeSum: true



3 Functions — Alphabetical List

3-720

The output S  is a scalar with the specified SumWordLength of 32. The
FractionLength of S is 11 because SumMode was set to KeepLSB.

Sum of Elements in Each Column

Create a fi array, and compute the sum of the elements in each column.

A=fi([1 2 8;3 7 0;1 2 2])

A = 

     1     2     8

     3     7     0

     1     2     2

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

S=sum(A)

S = 

     5    11    10

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 18

        FractionLength: 11

MATLAB returns a row vector with the sums of each column of A. The WordLength of S
has increased by two bits because ceil(log2(size(A,1)))=2. The FractionLength
remains the same because the default setting of SumMode is FullPrecision.

Sum of Elements in Each Row

Compute the sum along the second dimension (dim=2) of 3-by-3 matrix A.

A=fi([1 2 8;3 7 0;1 2 2])

A = 



 sum

3-721

     1     2     8

     3     7     0

     1     2     2

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

S=sum(A, 2)

S = 

    11

    10

     5

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 18

        FractionLength: 11

MATLAB returns a column vector of the sums of the elements in each row. The
WordLength of S is 18 because ceil(log2(size(A,2)))=2.

Sum of Elements Preserving Data Type

Compute the sums of the columns of A so that the output array, S, has the same data
type.

A=fi([1 2 8;3 7 0;1 2 2]), class(A)

A = 

     1     2     8

     3     7     0

     1     2     2

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

ans =



3 Functions — Alphabetical List

3-722

embedded.fi

S=sum(A, 'native'), class(S)

S = 

     5    11    10

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 18

        FractionLength: 11

ans =

embedded.fi

MATLAB preserves the data type of A and returns a row vector S of type embedded.fi.

Input Arguments

A — Input fi array
fi object | numeric variable

fi input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi
object. If no value is specified, the default is the first array dimension whose size does not
equal 1.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

type — Output class
'double' | 'native'



 sum

3-723

Output class, specified as 'double' or 'native', defines the data type that the
operation is performed in and returned in.
Data Types: char

Output Arguments

S — Sum array
scalar | vector | matrix | multidimensional array

Sum array, returned as a scalar, vector, matrix, or multidimensional array.

See Also
add | divide | fi | fimath | mpy | mrdivide | numerictype | rdivide | sub |
sum



3 Functions — Alphabetical List

3-724

surf
Create 3-D shaded surface plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB surf reference page for more information.



 surfc

3-725

surfc
Create 3-D shaded surface plot with contour plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB surfc reference page for more information.



3 Functions — Alphabetical List

3-726

surfl
Create surface plot with colormap-based lighting

Description

This function accepts fi objects as inputs.

Refer to the MATLAB surfl reference page for more information.



 surfnorm

3-727

surfnorm
Compute and display 3-D surface normals

Description

This function accepts fi objects as inputs.

Refer to the MATLAB surfnorm reference page for more information.



3 Functions — Alphabetical List

3-728

text
Create text object in current axes

Description

This function accepts fi objects as inputs.

Refer to the MATLAB text reference page for more information.



 times

3-729

times
Element-by-element multiplication of fi objects

Syntax

C =A.*B

C = times(A, B)

Description

C =A.*B performs element-by-element multiplication of A and B, and returns the result
in C.

C = times(A, B) is an alternate way to execute A.*B.

Examples

Multiply a fi Object by a Scalar

Use the times function to perform element-by-element multiplication of a fi object and
a scalar.

a=4;

b=fi([2 4 7; 9 0 2])

b = 

     2     4     7

     9     0     2

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 11

a is a scalar double, and b is a matrix of fi objects. When doing arithmetic between a fi
and a double, the double is cast to a fi with the same word length and signedness of the
fi, and best-precision fraction length. The result of the operation is a fi.



3 Functions — Alphabetical List

3-730

c=a.*b

c = 

     8    16    28

    36     0     8

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 32

        FractionLength: 23

During the operation, a was cast to a fi object with wordlength 16. The output, c, is a fi
object with word length 32, the sum of the word lengths of the two multiplicands, a and
b. This is because the default setting of ProductMode in fimath is FullPrecision.

Multiply Two fi Objects

Use the times function to perform element-by-element multiplication of two fi objects.

a=fi([5 9 9; 1 2 -3], 1, 16, 3)

a = 

     5     9     9

     1     2    -3

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 3

b=fi([2 4 7; 9 0 2], 1, 16, 3)

b = 

     2     4     7

     9     0     2

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 3

c=a.*b

c = 



 times

3-731

    10    36    63

     9     0    -6

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 32

        FractionLength: 6

The word length and fraction length of c are equal to the sums of the word lengths
and fraction lengths of a and b. This is because the default setting of ProductMode in
fimath is FullPrecision.

Input Arguments

A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects
or built-in types. A and B must have the same dimensions unless one is a scalar value.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Complex Number Support: Yes

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects
or built-in types. A and B must have the same dimensions unless one is a scalar value.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Complex Number Support: Yes

Output Arguments

C — Output array
scalar | vector | matrix | multidimensional array



3 Functions — Alphabetical List

3-732

Output array, specified as a scalar, vector, matrix or multidimensional array.

See Also
minus | mtimes | plus | uminus



 toeplitz

3-733

toeplitz
Create Toeplitz matrix

Syntax

t = toeplitz(a,b)

t = toeplitz(b)

Description

t = toeplitz(a,b) returns a nonsymmetric Toeplitz matrix having a as its first
column and b as its first row. b is cast to the numerictype of a.

t = toeplitz(b) returns the symmetric or Hermitian Toeplitz matrix formed from
vector b, where b is the first row of the matrix.

The output fi object t has the same numerictype properties as the leftmost fi
object input. If the leftmost fi object input has a local fimath, the output fi object t is
assigned the same local fimath. Otherwise, the output fi object t has no local fimath.

Examples

toeplitz(a,b) casts b into the data type of a. In this example, overflow occurs:

fipref('NumericTypeDisplay','short');

format short g

a = fi([1 2 3],true,8,5) 

a =

 

     1     2     3

      s8,5

b = fi([1 4 8],true,16,10) 

b =

 



3 Functions — Alphabetical List

3-734

     1     4     8

      s16,10



 toeplitz

3-735

toeplitz(a,b) 

ans =

 

            1       3.9688       3.9688

            2            1       3.9688

            3            2            1

      s8,5

toeplitz(b,a) casts a into the data type of b. In this example, overflow does not occur:

toeplitz(b,a) 

ans =

 

     1     2     3

     4     1     2

     8     4     1

      s16,10

If one of the arguments of toeplitz is a built-in data type, it is cast to the data type of
the fi object.

x = [1 exp(1) pi]

x =

            1       2.7183       3.1416

toeplitz(a,x) 

ans =

 

            1       2.7188       3.1563

            2            1       2.7188

            3            2            1

      s8,5

toeplitz(x,a) 

ans =

 

            1            2            3

       2.7188            1            2

       3.1563       2.7188            1

      s8,5



3 Functions — Alphabetical List

3-736

tostring
Convert numerictype or quantizer object to string

Syntax

s = tostring(T)

s = tostring(q)

Description

s = tostring(T) converts numerictype object T to a string s such that eval(s)
would create a numerictype object with the same properties as T.

s = tostring(q) converts quantizer object q to a string s. After converting q to
a string, the function eval(s) can use s to create a quantizer object with the same
properties as q.

Examples

This example uses the tostring function to convert a numerictype object T to a string
s

T = numerictype(1,16,15);

s = tostring(T);

T1 = eval(s);

isequal(T,T1)

ans =

     1

See Also
eval | numerictype | quantizer



 transpose

3-737

transpose
Transpose operation

Description

This function accepts fi objects as inputs.

Refer to the MATLAB transpose reference page for more information.



3 Functions — Alphabetical List

3-738

treeplot
Plot picture of tree

Description

This function accepts fi objects as inputs.

Refer to the MATLAB treeplot reference page for more information.



 tril

3-739

tril
Lower triangular part of matrix

Description

This function accepts fi objects as inputs.

Refer to the MATLAB tril reference page for more information.



3 Functions — Alphabetical List

3-740

trimesh
Create triangular mesh plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB trimesh reference page for more information.



 triplot

3-741

triplot
Create 2-D triangular plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB triplot reference page for more information.



3 Functions — Alphabetical List

3-742

trisurf
Create triangular surface plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB trisurf reference page for more information.



 triu

3-743

triu
Upper triangular part of matrix

Description

This function accepts fi objects as inputs.

Refer to the MATLAB triu reference page for more information.



3 Functions — Alphabetical List

3-744

ufi
Construct unsigned fixed-point numeric object

Syntax

a = ufi

a = ufi(v)

a = ufi(v,w)

a = ufi(v,w,f)

a = ufi(v,w,slope,bias)

a = ufi(v,w,slopeadjustmentfactor,fixedexponent,bias)

Description

You can use the ufi constructor function in the following ways:

• a = ufi is the default constructor and returns an unsigned fi object with no value,
16-bit word length, and 15-bit fraction length.

• a = ufi(v) returns an unsigned fixed-point object with value v, 16-bit word length,
and best-precision fraction length.

• a = ufi(v,w) returns an unsigned fixed-point object with value v, word length w,
and best-precision fraction length.

• a = ufi(v,w,f) returns an unsigned fixed-point object with value v, word length w,
and fraction length f.

• a = ufi(v,w,slope,bias) returns an unsigned fixed-point object with value v,
word length w, slope, and bias.

• a = ufi(v,w,slopeadjustmentfactor,fixedexponent,bias) returns an
unsigned fixed-point object with value v, word length w, slopeadjustmentfactor,
fixedexponent, and bias.

fi objects created by the ufi constructor function have the following general types of
properties:

• “Data Properties” on page 3-353
• “fimath Properties” on page 3-745



 ufi

3-745

• “numerictype Properties” on page 3-355

These properties are described in detail in “fi Object Properties” in the Properties
Reference.

Note: fi objects created by the ufi constructor function have no local fimath.

Data Properties

The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary
• data — Numerical real-world value of a fi object
• dec — Stored integer value of a fi object in decimal
• double — Real-world value of a fi object, stored as a MATLAB double
• hex — Stored integer value of a fi object in hexadecimal
• int — Stored integer value of a fi object, stored in a built-in MATLAB integer data

type. You can also use int8, int16, int32, int64, uint8, uint16, uint32, and
uint64 to get the stored integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

These properties are described in detail in “fi Object Properties”.

fimath Properties

When you create a fi object with the ufi constructor function, that fi object does not
have a local fimath object. You can attach a fimath object to that fi object if you do
not want to use the default fimath settings. For more information, see “fimath Object
Construction” in the Fixed-Point Designer documentation.

• fimath — fixed-point math object

The following fimath properties are always writable and, by transitivity, are also
properties of a fi object.

• CastBeforeSum — Whether both operands are cast to the sum data type before
addition



3 Functions — Alphabetical List

3-746

Note: This property is hidden when the SumMode is set to FullPrecision.
• OverflowAction — Action to take on overflow
• ProductBias — Bias of the product data type
• ProductFixedExponent — Fixed exponent of the product data type
• ProductFractionLength — Fraction length, in bits, of the product data type
• ProductMode — Defines how the product data type is determined
• ProductSlope — Slope of the product data type
• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data

type
• ProductWordLength — Word length, in bits, of the product data type
• RoundingMethod — Rounding method
• SumBias — Bias of the sum data type
• SumFixedExponent — Fixed exponent of the sum data type
• SumFractionLength — Fraction length, in bits, of the sum data type
• SumMode — Defines how the sum data type is determined
• SumSlope — Slope of the sum data type
• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
• SumWordLength — The word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties”.

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a
property of the fi object.

numerictype — Object containing all the data type information of a fi object, Simulink
signal or model parameter

The following numerictype properties are, by transitivity, also properties of a fi object.
The properties of the numerictype object become read only after you create the fi
object. However, you can create a copy of a fi object with new values specified for the
numerictype properties.



 ufi

3-747

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object
• DataTypeMode — Data type and scaling mode of a fi object
• FixedExponent — Fixed-point exponent associated with a fi object
• SlopeAdjustmentFactor — Slope adjustment associated with a fi object
• FractionLength — Fraction length of the stored integer value of a fi object in bits
• Scaling — Fixed-point scaling mode of a fi object
• Signed — Whether a fi object is signed or unsigned
• Signedness — Whether a fi object is signed or unsigned

Note: numerictype objects can have a Signedness of Auto, but all fi objects must
be Signed or Unsigned. If a numerictype object with Auto Signedness is used to
create a fi object, the Signedness property of the fi object automatically defaults to
Signed.

• Slope — Slope associated with a fi object
• WordLength — Word length of the stored integer value of a fi object in bits

For further details on these properties, see “numerictype Object Properties”.

Examples

Note For information about the display format of fi objects, refer to “View Fixed-Point
Data”.

For examples of casting, see “Cast fi Objects”.

Example 1

For example, the following creates an unsigned fi object with a value of pi, a word
length of 8 bits, and a fraction length of 3 bits:

a = ufi(pi,8,3)

 

a =



3 Functions — Alphabetical List

3-748

 

    3.1250

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 8

        FractionLength: 3

Default fimath properties are associated with a. When a fi object does not have a local
fimath object, no fimath object properties are displayed in its output. To determine
whether a fi object has a local fimath object, use the isfimathlocal function.

isfimathlocal(a)

ans =

     0

A returned value of 0 means the fi object does not have a local fimath object. When the
isfimathlocal function returns a 1, the fi object has a local fimath object.

Example 2

The value v can also be an array:

a = ufi((magic(3)/10),16,12) 

a =

 

    0.8000    0.1001    0.6001

    0.3000    0.5000    0.7000

    0.3999    0.8999    0.2000

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 16

        FractionLength: 12

>> 

Example 3

If you omit the argument f, it is set automatically to the best precision possible:

a = ufi(pi,8) 



 ufi

3-749

a =

 

    3.1406

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 8

        FractionLength: 6

Example 4

If you omit w and f, they are set automatically to 16 bits and the best precision possible,
respectively:

a = ufi(pi) 

a =

 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Unsigned

            WordLength: 16

        FractionLength: 14

See Also
fi | fimath | fipref | isfimathlocal | numerictype | quantizer | sfi



3 Functions — Alphabetical List

3-750

uint8
Convert fi object to unsigned 8-bit integer

Syntax

c = uint8(a)

Description

c = uint8(a) returns the built-in uint8 value of fi object a, based on its real world
value. If necessary, the data is rounded-to-nearest and saturated to fit into an uint8.

Examples

This example shows the uint8 values of a fi object.

a = fi([-pi 0.5 pi],0,8);

c = uint8(a)

c =

   0    1    3

See Also
storedInteger | int8 | int16 | int32 | int64 | uint16 | uint32 | uint64



 uint16

3-751

uint16
Convert fi object to unsigned 16-bit integer

Syntax

c = uint16(a)

Description

c = uint16(a) returns the built-in uint16 value of fi object a, based on its real world
value. If necessary, the data is rounded-to-nearest and saturated to fit into an uint16.

Examples

This example shows the uint16 values of a fi object.

a = fi([-pi 0.5 pi],0,16);

c = uint16(a)

c =

   0    1    3

See Also
storedInteger | int8 | int16 | int32 | int64 | uint8 | uint32 | uint64



3 Functions — Alphabetical List

3-752

uint32
Stored integer value of fi object as built-in uint32

Syntax

c = uint32(a)

Description

c = uint32(a) returns the built-in uint32 value of fi object a, based on its real world
value. If necessary, the data is rounded-to-nearest and saturated to fit into an uint32.

Examples

This example shows the uint32 values of a fi object.

a = fi([-pi 0.5 pi],0,32);

c = uint32(a)

c =

   0    1    3

See Also
storedInteger | int8 | int16 | int32 | int64 | uint8 | uint16 | uint64



 uint64

3-753

uint64
Convert fi object to unsigned 64-bit integer

Syntax

c = uint64(a)

Description

c = uint64(a) returns the built-in uint64 value of fi object a, based on its real world
value. If necessary, the data is rounded-to-nearest and saturated to fit into an uint64.

Examples

This example shows the uint64 values of a fi object.

a = fi([-pi 0.5 pi],0,64);

c = uint64(a)

c =

   0    1    3

See Also
storedInteger | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32



3 Functions — Alphabetical List

3-754

uminus
Negate elements of fi object array

Syntax

uminus(a)

Description

uminus(a) is called for the syntax -a when a is an object. -a negates the elements of a.

uminus does not support fi objects of data type Boolean.

Examples

When wrap occurs, -(-1) = -1 :

fipref('NumericTypeDisplay','short', ...

       'fimathDisplay','none');

format short g

a = fi(-1,true,8,7,'OverflowAction','Wrap') 

a =

 

    -1

      s8,7

-a 

ans =

 

    -1

      s8,7

b = fi([-1-i -1-i],true,8,7,'OverflowAction','Wrap') 

b =

 

           -1 -          1i           -1 -          1i



 uminus

3-755

      s8,7

-b 

ans =

 

           -1 -          1i           -1 -          1i

      s8,7

b' 

ans =

 

           -1 -          1i

           -1 -          1i

      s8,7

When saturation occurs, -(-1) = 0.99... :

c = fi(-1,true,8,7,'OverflowAction','Saturate') 

c =

 

    -1

      s8,7

-c 

ans =

 

      0.99219

      s8,7

d = fi([-1-i -1-i],true,8,7,'OverflowAction','Saturate') 

d =

 

           -1 -          1i           -1 -          1i

      s8,7

-d 

ans =

 

      0.99219 +    0.99219i      0.99219 +    0.99219i

      s8,7

d' 

ans =

 



3 Functions — Alphabetical List

3-756

           -1 +    0.99219i

           -1 +    0.99219i

      s8,7

See Also
plus | minus | mtimes | times



 unitquantize

3-757

unitquantize
Quantize except numbers within eps of +1

Syntax

y = unitquantize(q, x)

[y1,y2,...] = unitquantize(q,x1,x2,...)

Description

y = unitquantize(q, x) works the same as quantize except that numbers within
eps(q) of +1 are made exactly equal to +1 .

[y1,y2,...] = unitquantize(q,x1,x2,...) is equivalent to

y1 = unitquantize(q,x1), y2 = unitquantize(q,x2),...

Examples

This example demonstrates the use of unitquantize with a quantizer object q and a
vector x.

q = quantizer('fixed','floor','saturate',[4 3]);

x = (0.8:.1:1.2)';

y = unitquantize(q,x);

z = [x y]

e = eps(q)

This quantization outputs an array containing the original values of x and the quantized
values of x, followed by the value of eps(q):

z =

    0.8000    0.7500

    0.9000    1.0000

    1.0000    1.0000

    1.1000    1.0000



3 Functions — Alphabetical List

3-758

    1.2000    1.0000

e =

    0.1250

See Also
eps | quantize | quantizer | unitquantizer



 unitquantizer

3-759

unitquantizer
Constructor for unitquantizer object

Syntax

q = unitquantizer(...)

Description

q = unitquantizer(...) constructs a unitquantizer object, which is the same as
a quantizer object in all respects except that its quantize method quantizes numbers
within eps(q) of +1 to exactly +1.

See quantizer for parameters.

Examples

In this example, a vector x is quantized by a unitquantizer object u .

u = unitquantizer([4 3]);

x = (0.8:.1:1.2)';

y = quantize(u,x);

z = [x y]

e = eps(u)

This quantization outputs an array containing the original values of x and the values of
x that were quantized by the unitquantizer object u. The output also includes e, the
value of eps(u).

z =

    0.8000    0.7500

    0.9000    1.0000

    1.0000    1.0000

    1.1000    1.0000

    1.2000    1.0000



3 Functions — Alphabetical List

3-760

e =

    0.1250

See Also
quantize | quantizer | unitquantize



 unshiftdata

3-761

unshiftdata
Inverse of shiftdata

Syntax

y = unshiftdata(x,perm,nshifts)

Description

y = unshiftdata(x,perm,nshifts) restores the orientation of the data that was
shifted with shiftdata. The permutation vector is given by perm, and nshifts is the
number of shifts that was returned from shiftdata.

unshiftdata is meant to be used in tandem with shiftdata. These functions
are useful for creating functions that work along a certain dimension, like filter,
goertzel, sgolayfilt, and sosfilt.

Examples

Example 1

This example shifts x, a 3-by-3 magic square, permuting dimension 2 to the first
column. unshiftdata shifts x back to its original shape.

1. Create a 3-by-3 magic square:

x = fi(magic(3))

 

x =

 

     8     1     6

     3     5     7

     4     9     2

2. Shift the matrix x to work along the second dimension:



3 Functions — Alphabetical List

3-762

[x,perm,nshifts] = shiftdata(x,2) 

This command returns the permutation vector, perm, and the number of shifts, nshifts,
are returned along with the shifted matrix, x:

x =

 

     8     3     4

     1     5     9

     6     7     2

perm =

     2     1

nshifts =

     []

3. Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 

     8     1     6

     3     5     7

     4     9     2

Example 2

This example shows how shiftdata and unshiftdata work when you define dim as
empty.

1. Define x as a row vector:

x = 1:5

x =



 unshiftdata

3-763

     1     2     3     4     5

2. Define dim as empty to shift the first non-singleton dimension of x to the first column:

[x,perm,nshifts] = shiftdata(x,[])

This command returns x as a column vector, along with perm, the permutation vector,
and nshifts, the number of shifts:

x =

     1

     2

     3

     4

     5

perm =

     []

nshifts =

     1

3. Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)    

y =

     1     2     3     4     5

See Also
ipermute | shiftdata | shiftdim



3 Functions — Alphabetical List

3-764

uplus
Unary plus

Description

This function accepts fi objects as inputs.

Refer to the MATLAB uplus reference page for more information.



 upperbound

3-765

upperbound
Upper bound of range of fi object

Syntax

upperbound(a)

Description

upperbound(a) returns the upper bound of the range of fi object a. If L =
lowerbound(a) and U = upperbound(a), then [L,U] = range(a).

See Also
eps | intmax | intmin | lowerbound | lsb | range | realmax | realmin



3 Functions — Alphabetical List

3-766

vertcat
Vertically concatenate multiple fi objects

Syntax

c = vertcat(a,b,...)

[a; b; ...]

[a;b]

Description

c = vertcat(a,b,...) is called for the syntax [a; b; ...] when any of a, b, ... ,
is a fi object.

[a;b] is the vertical concatenation of matrices a and b. a and b must have the same
number of columns. Any number of matrices can be concatenated within one pair
of brackets. N-D arrays are vertically concatenated along the first dimension. The
remaining dimensions must match.

Horizontal and vertical concatenation can be combined, as in [1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of rows of b, and if the
number of columns of a plus the number of columns of b equals the number of columns of
c.

The matrices in a concatenation expression can themselves be formed via a
concatenation, as in [a b;[c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi objects c are
taken from the leftmost fi object in the list (a,b,...).

See Also
horzcat



 voronoi

3-767

voronoi
Create Voronoi diagram

Description

This function accepts fi objects as inputs.

Refer to the MATLAB voronoi reference page for more information.



3 Functions — Alphabetical List

3-768

voronoin
Create n-D Voronoi diagram

Description

This function accepts fi objects as inputs.

Refer to the MATLAB voronoin reference page for more information.



 waterfall

3-769

waterfall
Create waterfall plot

Description

This function accepts fi objects as inputs.

Refer to the MATLAB waterfall reference page for more information.



3 Functions — Alphabetical List

3-770

wordlength
Word length of quantizer object

Syntax

wordlength(q)

Description

wordlength(q) returns the word length of the quantizer object q.

Examples
q = quantizer([16 15]);

wordlength(q)

ans =

    16

See Also
fi | fractionlength | exponentlength | numerictype | quantizer



 xlim

3-771

xlim
Set or query x-axis limits

Description

This function accepts fi objects as inputs.

Refer to the MATLAB xlim reference page for more information.



3 Functions — Alphabetical List

3-772

xor
Logical exclusive-OR

Description

This function accepts fi objects as inputs.

Refer to the MATLAB xor reference page for more information.



 ylim

3-773

ylim
Set or query y-axis limits

Description

This function accepts fi objects as inputs.

Refer to the MATLAB ylim reference page for more information.



3 Functions — Alphabetical List

3-774

zeros
Create array of all zeros with fixed-point properties

Syntax

X = zeros('like',p)

X = zeros(n,'like',p)

X = zeros(sz1,...,szN,'like',p)

X = zeros(sz,'like',p)

Description

X = zeros('like',p) returns a scalar 0 with the same numerictype, complexity
(real or complex), and fimath as p.

X = zeros(n,'like',p) returns an n-by-n array of zeros like p.

X = zeros(sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array of zeros like
p.

X = zeros(sz,'like',p) returns an array of zeros like p. The size vector, sz, defines
size(X).

Examples

2-D Array of Zeros With Fixed-Point Attributes

Create a 2-by-3 array of zeros with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 2-by-3 array of zeros that has the same numerictype properties as p.

X = zeros(2,3,'like',p)

X = 



 zeros

3-775

     0     0     0

     0     0     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 16

        FractionLength: 8

Size Defined by Existing Array

Define a 3-by-2 array A.

A = [1 4 ; 2 5 ; 3 6];

sz = size(A)

sz =

     3     2

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create an array of zeros that is the same size as A and has the same numerictype
properties as p.

X = zeros(sz,'like',p)

X = 

     0     0

     0     0

     0     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

Square Array of Zeros With Fixed-Point Attributes

Create a 4-by-4 array of zeros with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.



3 Functions — Alphabetical List

3-776

p = fi([],1,24,12);

Create a 4-by-4 array of zeros that has the same numerictype properties as p.

X = zeros(4, 'like', p)

X = 

     0     0     0     0

     0     0     0     0

     0     0     0     0

     0     0     0     0

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

Complex Fixed-Point Zero

Create a scalar fixed-point 0 that is not real valued, but instead is complex like an
existing array.

Define a complex fi object.

p = fi( [1+2i 3i],1,24,12);

Create a scalar 1 that is complex like p.

X = zeros('like',p)

X = 

   0.0000 + 0.0000i

          DataTypeMode: Fixed-point: binary point scaling

            Signedness: Signed

            WordLength: 24

        FractionLength: 12

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing
the algorithm itself. To reuse the algorithm, define the data types separately from the
algorithm.



 zeros

3-777

This approach allows you to define a baseline by running the algorithm with floating-
point data types. You can then test the algorithm with different fixed-point data types
and compare the fixed-point behavior to the baseline without making any modifications
to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T, which is a
structure that defines the data types of the coefficients and the input and output data.

function [y,z] = my_filter(b,a,x,z,T)

    % Cast the coefficients to the coefficient type

    b = cast(b,'like',T.coeffs);

    a = cast(a,'like',T.coeffs);

    % Create the output using zeros with the data type

    y = zeros(size(x),'like',T.data);

    for i = 1:length(x)

        y(i) = b(1)*x(i) + z(1);

        z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

        z(2) = b(3)*x(i)        - a(3) * y(i);

    end

end

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a
floating-point step input and a fixed-point step input, and then compares the results.

function zeros_ones_cast_example

    % Define coefficients for a filter with specification

    % [b,a] = butter(2,0.25)

    b = [0.097631072937818   0.195262145875635   0.097631072937818];

    a = [1.000000000000000  -0.942809041582063   0.333333333333333];

    % Define floating-point types

    T_float.coeffs = double([]);

    T_float.data   = double([]);

    % Create a step input using ones with the 

    % floating-point data type

    t = 0:20;

    x_float = ones(size(t),'like',T_float.data);

    % Initialize the states using zeros with the 

    % floating-point data type

    z_float = zeros(1,2,'like',T_float.data);



3 Functions — Alphabetical List

3-778

    % Run the floating-point algorithm

    y_float = my_filter(b,a,x_float,z_float,T_float);

     

    % Define fixed-point types

    T_fixed.coeffs = fi([],true,8,6);

    T_fixed.data   = fi([],true,8,6);

    % Create a step input using ones with the 

    % fixed-point data type

    x_fixed = ones(size(t),'like',T_fixed.data);

    % Initialize the states using zeros with the 

    % fixed-point data type

    z_fixed = zeros(1,2,'like',T_fixed.data);

    % Run the fixed-point algorithm

    y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);

     

    % Compare the results

    coder.extrinsic('clf','subplot','plot','legend')

    clf

    subplot(211)

    plot(t,y_float,'co-',t,y_fixed,'kx-')

    legend('Floating-point output','Fixed-point output')

    title('Step response')

    subplot(212)

    plot(t,y_float - double(y_fixed),'rs-')

    legend('Error')

    figure(gcf)

end

• “Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using
cast and zeros”

Input Arguments

n — Size of square matrix
integer value

Size of square matrix, specified as an integer value, defines the output as a square, n-by-
n matrix of ones.

• If n is zero, X is an empty matrix.



 zeros

3-779

• If n is negative, it is treated as zero.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values, defines X as a sz1-by...-
by-szN array.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not

include those dimensions.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of this vector
indicates the size of the corresponding dimension.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not

include those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a
complex object, you must specify a value for the prototype. Otherwise, you do not need to
specify a value.



3 Functions — Alphabetical List

3-780

Complex Number Support: Yes

More About

Tips

Using the b = cast(a,'like',p) syntax to specify data types separately from
algorithm code allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements

for different data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm

code.

• “Manual Fixed-Point Conversion Workflow”
• “Manual Fixed-Point Conversion Best Practices”

See Also
cast | ones | zeros



 zlim

3-781

zlim
Set or query z-axis limits

Description

This function accepts fi objects as inputs.

Refer to the MATLAB zlim reference page for more information.





4

Classes — Alphabetical List



4 Classes — Alphabetical List

4-2

coder.MexConfig
Package: coder

Code acceleration configuration object for use with fiaccel

Description

A coder.MexConfig object contains all the configuration parameters that the fiaccel
function uses when accelerating fixed-point code via a generated MEX function. To use
this object, first create it using the lowercase coder.mexconfig function and then, pass
it to the fiaccel function using the -config option.

Construction

cfg = coder.mexconfig creates a coder.MexConfig object, cfg, for fiaccel MEX
function generation.

Properties

ConstantFoldingTimeout

Maximum number of constant folder instructions

Specify, as a positive integer, the maximum number of instructions to be executed by the
constant folder.

Default: 10000

DynamicMemoryAllocation

Dynamic memory allocation for variable-size data

By default, when this property is set to 'Threshold' , dynamic memory
allocation is enabled for all variable-size arrays whose size is greater than
DynamicMemoryAllocationThreshold and fiaccel allocates memory for this



 coder.MexConfig

4-3

variable-size data dynamically on the heap. Set this property to 'Off' to allocate
memory statically on the stack. Set it to'AllVariableSizeArrays' to allocate memory
for all variable-size arrays dynamically on the heap . You must use dynamic memory
allocation for all unbounded variable-size data.

This property, DynamicMemoryAllocation, is enabled only when
EnableVariableSizing is true. When you set DynamicMemoryAllocation to
`Threshold’, it enables the DynamicMemoryAllocationThreshold property.

Default: Threshold

DynamicMemoryAllocationThreshold

Memory allocation threshold

Specify the integer size of the threshold for variable-size arrays above which fiaccel
allocates memory on the heap.

Default: 65536

EchoExpressions

Show results of code not terminated with semicolons

Set this property to true to have the results of code instructions that do not terminate
with a semicolon appear in the MATLAB Command Window. If you set this property to
false, code results do not appear in the MATLAB Command Window.

Default: true

EnableDebugging

Compile generated code in debug mode

Set this property to true to compile the generated code in debug mode. Set this property
to false to compile the code in normal mode.

Default: false

EnableVariableSizing

Variable-sized arrays support



4 Classes — Alphabetical List

4-4

Set this property to true to enable support for variable-sized arrays and to enable the
DynamicMemoryAllocation property. If you set this property to false, variable-sized
arrays are not supported.

Default: true

ExtrinsicCalls

Extrinsic function calls

An extrinsic function is a function on the MATLAB path that the generated code
dispatches to MATLAB software for execution. fiaccel does not compile or generate
code for extrinsic functions. Set this property to true to have fiaccel generate code
for the call to a MATLAB function, but not generate the function's internal code. Set
this property to false to have fiaccel ignore the extrinsic function and not generate
code for the call to the MATLAB function. If the extrinsic function affects the output of
fiaccel, a compiler error occurs.

ExtrinsicCalls affects how MEX functions built by fiaccel generate random
numbers when using the MATLAB rand, randi, and randn functions. If extrinsic calls
are enabled, the generated mex function uses the MATLAB global random number
stream to generate random numbers. If extrinsic calls are not enabled, the MEX function
built with fiaccel uses a self-contained random number generator.

If you disable extrinsic calls, the generated MEX function cannot display run-time
messages from error or assert statements in your MATLAB code. The MEX function
reports that it cannot display the error message. To see the error message, enable
extrinsic function calls and generate the MEX function again.

Default: true

GenerateReport

Code generation report

Set this property to true to create an HTML code generation report. Set this property to
false to not create the report.

Default: false

GlobalDataSyncMethod

MEX function global data synchronization with MATLAB global workspace



 coder.MexConfig

4-5

Set this property to SyncAlways so synchronize global data at MEX function entry and
exit and for all extrinsic calls to ensure maximum consistency between MATLAB and the
generated MEX function. If the extrinsic calls do not affect global data, use this option in
conjunction with the coder.extrinsic -sync:off option to turn off synchronization
for these calls to maximize performance.

If you set this property to SyncAtEntryAndExits, global data is synchronized only at
MEX function entry and exit. If your code contains extrinsic calls, but only a few affect
global data, use this option in conjunction with the coder.extrinsic -sync:on option
to turn on synchronization for these calls to maximize performance.

If you set this property to NoSync, no synchronization occurs. Ensure that your MEX
function does not interact with MATLAB globals before disabling synchronization
otherwise inconsistencies between MATLAB and the MEX function might occur.

Default: SyncAlways

InlineStackLimit

Stack size for inlined functions

Specify, as a positive integer, the stack size limit on inlined functions.

Default: 4000

InlineThreshold

Maximum size of functions to be inlined

Specify, as a positive integer, the maximum size of functions to be inlined.

Default: 10

InlineThresholdMax

Maximum size of functions after inlining

Specify, as a positive integer, the maximum size of functions after inlining.

Default: 200

IntegrityChecks

Memory integrity



4 Classes — Alphabetical List

4-6

Sset this property to true to detect any violations of memory integrity in code generated
for MATLAB. When a violation is detected, execution stops and a diagnostic message
displays. Set this property to false to disable both memory integrity checks and the
runtime stack.

Default: true

LaunchReport

Code generation report display

Set this property to true to open the HTML code generation report automatically when
code generation completes. Set this property to false to disable displaying the report
automatically. This property applies only if you set the GenerateReport property to
true.

Default: true

ResponsivenessChecks

Responsiveness checks

Set this property to true to turn on responsiveness checks. Set this property to false to
disable responsiveness checks.

Default: true

SaturateOnIntegerOverflow

Integer overflow action

Overflows saturate to either the minimum or maximum value that the data type can
represent. Set this property to true to have overflows saturate. Set this property to
false to have overflows wrap to the appropriate value representable by the data type.

Default: true

StackUsageMax

Maximum stack usage per application

Specify, as a positive integer, the maximum stack usage per application in bytes. Set a
limit that is lower than the available stack size. Otherwise, a runtime stack overflow
might occur. Overflows are detected and reported by the C compiler, not by fiaccel.



 coder.MexConfig

4-7

Default: 200000

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Use the lowercase coder.mexconfig function to create a coder.MexConfig configuration
object. Set this object to disable run-time checks.

cfg = coder.mexconfig

% Turn off Integrity Checks, Extrinsic Calls, 

% and Responsiveness Checks

cfg.IntegrityChecks = false;

cfg.ExtrinsicCalls = false;

cfg.ResponsivenessChecks = false;

% Use fiaccel to generate a MEX function for file foo.m

fiaccel -config cfg foo

See Also
coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType |
coder.mexconfig | coder.PrimitiveType | coder.StructType | coder.Type |
coder.newtype | coder.resize | coder.typeof | fiaccel



4 Classes — Alphabetical List

4-8

DataTypeWorkflow.Converter class
Package: DataTypeWorkflow

Create fixed-point converter object

Description

A DataTypeWorkflow.Converter object contains the methods and parameters needed
to collect simulation and derived data, propose and apply data types to the model, and
analyze results. This class performs the same fixed-point conversion tasks as the Fixed-
Point Tool.

Construction

Converter = DataTypeWorkflow.Converter(systemToScale) creates a converter
object for the systemToScale. The converter object contains the methods and parameters
needed to collect simulation and derived data, propose and apply data types to the model,
and analyze results.

Input Arguments

systemToScale — Name of system to scale
string

The name of the model or subsystem to scale, specified as a string.
Example: converter =
DataTypeWorkflow.Converter('ex_fixed_point_workflow');

Properties

CurrentRunName — Current run in the converter object
string

Name of the current run stored in the converter object, specified as a string.



 DataTypeWorkflow.Converter class

4-9

Example: converter.CurrentRunName = ‘FixedPointRun’

Data Types: char

RunNames — Names of all runs
cell array of strings

Names of runs stored in the converter object, specified as a cell array of strings.
Data Types: cell

SelectedSystemToScale — Name of model or subsystem
string

Name of the model or subsystem to scale, specified as a string.
Data Types: char

ShortcutsForSelectedSystem — Available system shortcuts
cell array of strings

Names of the system settings shortcuts available for the selected system, specified as a
cell array of strings. Additional shortcuts may be created from within the Fixed-Point
Tool. For more information, see “Model settings”.
Data Types: cell

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Alternatives

The DataTypeWorkflow.Converter class offers a command-line approach to using the
Fixed-Point Tool. See fxptdlg for more information.



4 Classes — Alphabetical List

4-10

See Also
DataTypeWorkflow.ProposalSettings

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”

More About
• “The Command-Line Interface for the Fixed-Point Tool”



 DataTypeWorkflow.DiffRunResult class

4-11

DataTypeWorkflow.DiffRunResult class
Package: DataTypeWorkflow

Results from comparing two simulation runs

Description

The DataTypeWorkflow.DiffRunResult class manages the results from comparing
two simulation runs. A DataTypeWorkflow.DiffRunResult object contains a
DataTypeWorkflow.DiffSignalResult object for each signal compared.

Construction

The DataTypeWorkflow.Converter.compareRuns method returns a handle to a
DataTypeWorkflow.DiffRunResult object.

Properties

count — Number of compared signal results
scalar

Number of compared signal results, stored as an int32.

Data Types: int32

dateCreated — Date of object creation
serial date number

Date of object creation, stored in serial date number format. For more information, see
now in the MATLAB documentation.

Data Types: double

matlabVersion — Version of MATLAB used
string

Version of MATLAB used to create instance of DataTypeWorkflow.DiffRunResult,
stored as a string.



4 Classes — Alphabetical List

4-12

Data Types: char

runName1 — Name of first run
string

Name of first run compared, specified as a string.
Data Types: char

runName2 — Name of second run
string

Name of second run compared, specified as a string.
Data Types: char

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
DataTypeWorkflow.Converter.compareRuns |
DataTypeWorkflow.DiffSignalResult | Simulink.sdi.DiffRunResult

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



 DataTypeWorkflow.DiffSignalResult class

4-13

DataTypeWorkflow.DiffSignalResult class
Package: DataTypeWorkflow

Results from comparing two signals

Description

The DataTypeWorkflow.DiffSignalResult object manages the results from
comparing two signals. A DataTypeWorkflow.DiffSignalResult object contains
the value differences of the signals, the tolerance data, and the data after any specified
synchronization methods are performed.

Construction

The DataTypeWorkflow.Converter.compareResults method reurns a handle to a
DataTypeWorkflow.DiffSignalResult object, which contains the comparison results.

Properties

diff — Value differences after synchronizing data
timeseries object

A MATLAB timeseries object specifying the value differences after synchronizing the
two time series data.

match — Whether the two timeseries objects match
0 | 1

A boolean indicating if the two timeseries objects match according to the specified
tolerance and time synchronization options.
Data Types: logical

result1 — Result object to compare
DataTypeWorkflow.Result object



4 Classes — Alphabetical List

4-14

DataTypeWorkflow.Result object that is being compared.

result2 — Result object to compare
DataTypeWorkflow.Result object

DataTypeWorkflow.Result object that is being compared.

sync1 — Time series 1 after synchronization has been applied
timeseries object

A MATLAB timeseries object specifying time series 1 after synchronization has been
applied.

sync2 — Time series 2 after synchronization has been applied
timeseries object

A MATLAB timeseries object specifying time series 2 after synchronization has been
applied.

tol — Absolute tolerance value at each synchronized time point
timeseries object

A MATLAB timeseries object specifying the actual absolute tolerance value at each
synchronized time point.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
DataTypeWorkflow.Result | DataTypeWorkflow.Converter.compareResults |
Simulink.sdi.DiffSignalResult

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



 DataTypeWorkflow.ProposalSettings class

4-15

DataTypeWorkflow.ProposalSettings class
Package: DataTypeWorkflow

Proposal settings object for data type proposals

Description

The DataTypeWorkflow.ProposalSettings class manages the properties related to
how data types are proposed for a model.

Construction

propSettings = DataTypeWorkflow.ProposalSettings creates a proposal
settings object. A proposal settings object manages properties related to how data types
are proposed for a model, including default floating point data type, and safety margins
for the proposed data types.

Properties

DesignSafetyMargin — Safety margin for design minimum and maximum values
0 (default) | scalar

Specify safety margin for design minimum and maximum values. The design minimum
and maximum values are adjusted by the percentage designated by this parameter.
Example: A value of 55 specifies that a range at least 55 percent larger is desired. A
value of –15 specifies that a range up to 15 percent smaller is acceptable.
Data Types: double

FloatingPointDefaultDataType — Default data type for all floating point signals
‘Remain floating point’ (default) | string

Specify as a string the default data type to use for all floating-point signals. Use this
property to change the floating-point data types in the model to fixed-point.
Example: propSettings.FloatingPointDefaultDataType = 'fixdt(1,16,8)'



4 Classes — Alphabetical List

4-16

Data Types: char

ProposeFractionLengthsForDefaultWordLength — Propose fraction lengths for
specified word length
1 (default) | 0

Set to true (1) to propose fraction lengths for the default word length specified in the
FloatingPointDefaultDataType property. Setting this property to 1 (true) automatically
sets the ProposeWordLengthsForDefaultFractionLength property to 0 (false).

Data Types: logical

ProposeWordLengthsForDefaultFractionLength — Propose word lengths for
specified fraction lengths
0 (default) | 1

Set to true (1) to propose word lengths for the default fraction length specified in the
FloatingPointDefaultDataType property. Setting this property to 1 (true) automatically
sets the ProposeFractionLengthsForDefaultWordLength property to 0 (false).

Data Types: logical

SimSafetyMargin — Safety margin for simulation minimum and maximum values
0 (default) | scalar

The simulation minimum and maximum values are adjusted by the percentage
designated by this parameter. This allows you to specify a range different from that
obtained from the simulation run.
Example: A value of 55 specifies that a range at least 55 percent larger is desired. A
value of –15 specifies that a range of up to 15 percent smaller is acceptable.
Data Types: double

UseDerivedMinMax — Whether to use derived ranges to propose data types
1 (default) | 0

Specify whether to use derived ranges for data type proposals.
Data Types: logical

UseSimMinMax — Whether to use simulation ranges to propose data types
1 (default) | 0

Specify whether to use simulation ranges for data type proposals.



 DataTypeWorkflow.ProposalSettings class

4-17

Data Types: logical

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Alternatives

The properties of the DataTypeWorkflow.ProposalSettings class can also be
controlled from the Automatic data typing for selected system pane in the Fixed-
Point Tool. See fxptdlg for more information.

See Also
DataTypeWorkflow.Converter

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



4 Classes — Alphabetical List

4-18

DataTypeWorkflow.Result class
Package: DataTypeWorkflow

Object containing run result information

Description

The DataTypeWorkflow.Result class manages the results of simulation, derivation,
and data type proposals.

Construction

The DataTypeWorkflow.Converter.results method returns a handle to a
DataTypeWorkflow.Result object.

Properties

Comments — Comments associated with the signal
cell array of strings

Any comments associated with the signal, stored as a cell array of strings.
Data Types: cell

CompiledDataType — Data type used during simulation
string

String containing the data type used during simulation.
Data Types: char

DerivedMax — Derived maximum value
scalar

The derived maximum value for the signal or internal data based on specified design
maximums.
Data Types: double



 DataTypeWorkflow.Result class

4-19

DerivedMin — Derived minimum value
scalar

The derived minimum value for the signal or internal data based on specified design
minimums.
Data Types: double

ProposedDataType — Proposed data type
string

String containing the data type proposed for the signal or internal data type associated
with this result.
Data Types: char

ResultName — Name of signal
string

The name of the signal or internal data associated with this result, stored as a string.
Data Types: char

RunName — Name of run associated with result
string

Name of run associated with result, specified as a string.
Data Types: char

Saturations — Number of saturations that occurred
scalar

The number of occurrences where the signal or internal data associated with this result
saturated at the maximum or minimum of its specified data type. This field is cumulative
of all the executions of the run the result is associated with.
Data Types: double

SimMax — Simulation maximum
scalar

The maximum values obtained for the signal or internal data during all of the saved
executions of the run this result is associated with.



4 Classes — Alphabetical List

4-20

Data Types: double

SimMin — Simulation minimum
scalar

The minimum value obtained for the signal or internal data during all of the saved
executions of the run this result is associated with.
Data Types: double

SpecifiedDataType — Specified data type of signal
string

The data type currently specified for a signal, which will take effect the next time the
system is run.
Data Types: char

Wraps — Number of wraps that occurred
scalar

The number of occurrences where the signal or internal data associated with this result
wrapped around the maximum or minimum of its specified data type. This field is
cumulative of all the executions of the run the result is associated with.
Data Types: double

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



5

Methods — Alphabetical List



5 Methods — Alphabetical List

5-2

addApproximation
Replace floating-point function with lookup table during fixed-point conversion

Syntax

addApproximation(approximationObject)

Description

addApproximation(approximationObject) specifies a lookup table replacement
in a coder.FixptConfig object. During floating-point to fixed-point conversion, the
conversion process generates a lookup table approximation for the function specified in
the approximationObject.

Input Arguments

approximationObject — Function replacement configuration object
coder.mathfcngenerator.LookupTable configuration object

Function replacement configuration object that specifies how to create an
approximation for a MATLAB function. Use the coder.FixptConfig configuration
object addApproximation method to associate this configuration object with a
coder.FixptConfig object. Then use the fiaccel function -float2fixed option with
coder.FixptConfig to convert floating-point MATLAB code to fixed-point MATLAB
code.

Examples

Replace log function with an optimized lookup table replacement

Create a function replacement configuration object that specifies to replace the log
function with an optimized lookup table.

logAppx = coder.approximation('Function','log','OptimizeLUTSize',...



 addApproximation

5-3

          true,'InputRange',[0.1,1000],'InterpolationDegree',1,...

          'ErrorThreshold',1e-3,...  

          'FunctionNamePrefix','log_optim_','OptimizeIterations',25);  

Create a fixed-point configuration object and associate the function replacement
configuration object with it.

fixptcfg = coder.config('fixpt');

fixptcfg.addApproximation(logAppx);

You can now generate fixed-point code using the fiaccel function.

• “Replace the exp Function with a Lookup Table”
• “Replace a Custom Function with a Lookup Table”

See Also
coder.FixptConfig | fiaccel

More About
• “Replacing Functions Using Lookup Table Approximations”



5 Methods — Alphabetical List

5-4

addDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Add design range specification to parameter

Syntax

addDesignRangeSpecification(fcnName,paramName,designMin, designMax)

Description

addDesignRangeSpecification(fcnName,paramName,designMin, designMax)

specifies the minimum and maximum values allowed for the parameter, paramName, in
function, fcnName. The fixed-point conversion process uses this design range information
to derive ranges for downstream variables in the code.

Input Arguments

fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

designMin — Minimum value allowed for this parameter
scalar

Minimum value allowed for this parameter, specified as a scalar double.



 addDesignRangeSpecification

5-5

Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

Examples

Add a Design Range Specification

% Set up the fixed-point configuration object

cfg = coder.config('fixpt');

cfg.TestBenchName = 'dti_test';

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

cfg.ComputeDerivedRanges = true;

 

% Derive ranges  and generate fixed-point code

fiaccel -float2fixed cfg dti

See Also
coder.FixptConfig | coder.FixptConfig.hasDesignRangeSpecification
| coder.FixptConfig.removeDesignRangeSpecification
| coder.FixptConfig.clearDesignRangeSpecifications |
coder.FixptConfig.getDesignRangeSpecification | fiaccel



5 Methods — Alphabetical List

5-6

addFunctionReplacement
Class: coder.FixptConfig
Package: coder

Replace floating-point function with fixed-point function during fixed-point conversion

Syntax

addFunctionReplacement(floatFn,fixedFn)

Description

addFunctionReplacement(floatFn,fixedFn) specifies a function replacement
in a coder.FixptConfig object. During floating-point to fixed-point conversion, the
conversion process replaces the specified floating-point function with the specified fixed-
point function. The fixed-point function must be in the same folder as the floating-point
function or on the MATLAB path.

Input Arguments

floatFn — Name of floating-point function
'' (default) | string

Name of floating-point function, specified as a string.

fixedFn — Name of fixed-point function
'' (default) | string

Name of fixed-point function, specified as a string.

Examples

Specify Function Replacement in Fixed-Point Conversion Configuration Object

Suppose that:



 addFunctionReplacement

5-7

• The function myfunc calls a local function myadd.
• The test function mytest calls myfunc.
• You want to replace calls to myadd with the fixed-point function fi_myadd.

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is mytest.

fixptcfg.TestBenchName = 'mytest';

Specify that the floating-point function, myadd, should be replaced with the fixed-point
function, fi_myadd.

fixptcfg.addFunctionReplacement('myadd', 'fi_myadd');

Convert the floating-point MATLAB function, myfunc, to fixed-point.

fiaccel -float2fixed fixptcfg myfunc

fiaccel  replaces myadd with fi_myadd during floating-point to fixed-point
conversion.

See Also
coder.FixptConfig | fiaccel



5 Methods — Alphabetical List

5-8

clearDesignRangeSpecifications
Class: coder.FixptConfig
Package: coder

Clear all design range specifications

Syntax

clearDesignRangeSpecifications()

Description

clearDesignRangeSpecifications() clears all design range specifications.

Examples

Clear a Design Range Specification

% Set up the fixed-point configuration object

cfg = coder.config('fixpt');

cfg.TestBenchName = 'dti_test';

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

cfg.ComputeDerivedRanges = true; 

% Verify that the 'dti' function parameter 'u_in' has design range

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

% Now remove the design range

cfg.clearDesignRangeSpecifications()

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

See Also
coder.FixptConfig | coder.FixptConfig.addDesignRangeSpecification
| coder.FixptConfig.removeDesignRangeSpecification
| coder.FixptConfig.hasDesignRangeSpecification |
coder.FixptConfig.getDesignRangeSpecification | fiaccel



 getDesignRangeSpecification

5-9

getDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Get design range specifications for parameter

Syntax
[designMin, designMax] = getDesignRangeSpecification(fcnName,

paramName)

Description
[designMin, designMax] = getDesignRangeSpecification(fcnName,

paramName) gets the minimum and maximum values specified for the parameter,
paramName, in function, fcnName.

Input Arguments
fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

Output Arguments
designMin — Minimum value allowed for this parameter
scalar



5 Methods — Alphabetical List

5-10

Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

Examples

Get Design Range Specifications

% Set up the fixed-point configuration object

cfg = coder.config('fixpt');

cfg.TestBenchName = 'dti_test';

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

cfg.ComputeDerivedRanges = true; 

% Get the  design range for the 'dti' function parameter 'u_in' 

[designMin, designMax] = cfg.getDesignRangeSpecification('dti','u_in')

designMin =

    -1

designMax =

     1

See Also
coder.FixptConfig | coder.FixptConfig.addDesignRangeSpecification
| coder.FixptConfig.hasDesignRangeSpecification |
coder.FixptConfig.removeDesignRangeSpecification |
coder.FixptConfig.clearDesignRangeSpecifications | fiaccel



 hasDesignRangeSpecification

5-11

hasDesignRangeSpecification

Class: coder.FixptConfig
Package: coder

Determine whether parameter has design range

Syntax

hasDesignRange = hasDesignRangeSpecification(fcnName,paramName)

Description

hasDesignRange = hasDesignRangeSpecification(fcnName,paramName)

returns true if the parameter, param_name in function, fcn, has a design range
specified.

Input Arguments

fcnName — Name of function
string

Function name, specified as a string.
Example: ‘dti’
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Example: ‘dti’
Data Types: char



5 Methods — Alphabetical List

5-12

Output Arguments

hasDesignRange — Parameter has design range
true | false

Parameter has design range, returned as a boolean.
Data Types: logical

Examples

Verify That a Parameter Has a Design Range Specification

% Set up the fixed-point configuration object

cfg = coder.config('fixpt');

cfg.TestBenchName = 'dti_test';

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);

cfg.ComputeDerivedRanges = true; 

% Verify that the 'dti' function parameter 'u_in' has design range

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

hasDesignRanges =

     1

See Also
coder.FixptConfig | coder.FixptConfig.addDesignRangeSpecification
| coder.FixptConfig.removeDesignRangeSpecification
| coder.FixptConfig.clearDesignRangeSpecifications |
coder.FixptConfig.getDesignRangeSpecification | fiaccel



 removeDesignRangeSpecification

5-13

removeDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Remove design range specification from parameter

Syntax

removeDesignRangeSpecification(fcnName,paramName)

Description

removeDesignRangeSpecification(fcnName,paramName) removes the design
range information specified for parameter, paramName, in function, fcnName.

Input Arguments

fcnName — Name of function
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

Examples

Remove Design Range Specifications

% Set up the fixed-point configuration object



5 Methods — Alphabetical List

5-14

cfg = coder.config('fixpt');

cfg.TestBenchName = 'dti_test';

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

cfg.ComputeDerivedRanges = true; 

% Verify that the 'dti' function parameter 'u_in' has design range

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

% Now clear the design ranges and verify that 

% hasDesignRangeSpecification returns false

cfg.removeDesignRangeSpecification('dti', 'u_in')

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

See Also
coder.FixptConfig | coder.FixptConfig.addDesignRangeSpecification
| coder.FixptConfig.clearDesignRangeSpecifications
| coder.FixptConfig.hasDesignRangeSpecification |
coder.FixptConfig.getDesignRangeSpecification | fiaccel



 applyDataTypes

5-15

applyDataTypes
Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Apply proposed data types to model

Syntax
converter.applyDataTypes(RunName)

Description
converter.applyDataTypes(RunName) applies the proposed data types for the
specified run to the converter’s system.

Input Arguments
RunName — Name of run
string

Name of run to apply data types to, specified as a string.
Example: converter.applyDataTypes(‘Run1’)

Data Types: char

Alternatives
DataTypeWorkflow.Converter.applyDataTypes provides functionality similar

to the Fixed-Point Tool button Apply accepted fraction lengths . For more
information, see fxptdlg.

See Also
DataTypeWorkflow.ProposalSettings |
DataTypeWorkflow.Converter.proposeDataTypes



5 Methods — Alphabetical List

5-16

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



 applySettingsFromRun

5-17

applySettingsFromRun
Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Apply system settings used in previous run to model

Syntax

converter.applySettingsFromRun(RunName)

Description

converter.applySettingsFromRun(RunName) applies the data type override and
instrumentation settings used in a previous run to the model.

Input Arguments

RunName — Name of run
string

Name of run that has the settings to apply, specified as a string.
Example: converter.applySettingsFromRun('Run1')

Data Types: char

See Also
DataTypeWorkflow.Converter.applySettingsFromShortcut

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



5 Methods — Alphabetical List

5-18

applySettingsFromShortcut

Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Apply settings from shortcut to model

Syntax

converter.applySettingsFromShortcut(shortcutName)

Description

converter.applySettingsFromShortcut(shortcutName) applies the data type
override and instrumentation settings from the specified shortcut to the model.

Tips

• You can create additional shortcuts using the Fixed-Point Tool. For more information,
see “Model settings”.

Input Arguments

shortcutName — Name of shortcut
string

Name of shortcut that specifies which settings to use, specified as a string.
Example: converter.applySettingsFromShortcut('Model-wide no override
and full instrumentation')

Data Types: char



 applySettingsFromShortcut

5-19

Alternatives

DataTypeWorkflow.Converter.applySettingsFromShortcut provides
functionality similar to the Fixed-Point Tool button group Shortcuts to set up runs

. For more information, see fxptdlg.

See Also
DataTypeWorkflow.Converter.applySettingsFromRun | fxptdlg

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



5 Methods — Alphabetical List

5-20

compareResults
Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Compare two DataTypeWorkflow.Result objects

Syntax

diff = converter.compareResults(result1, result2)

Description

diff = converter.compareResults(result1, result2) compares two
DataTypeWorkflow.Result objects.

Input Arguments

Result1 — Result object
DataTypeWorkflow.Result object

DataTypeWorkflow.Result object to compare.

Result2 — Result object
DataTypeWorkflow.Result object

DataTypeWorkflow.Result object to compare.

Output Arguments

diff — DiffSignalResult object
DiffSignalResult object

A DataTypeWorkflow.DiffSignalResult object containing the results of the
comparison.



 compareResults

5-21

Alternatives

The DataTypeWorkflow.Converter.compareResults method offers a command-line
approach to using the Fixed-Point Tool. For more information, see fxptdlg.

See Also
fxptdlg | Simulink.sdi.compareSignals

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



5 Methods — Alphabetical List

5-22

compareRuns
Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Compare two runs of converter’s selected system

Syntax

diff = converter.compareRuns(RunName1, RunName2)

Description

diff = converter.compareRuns(RunName1, RunName2) compares the matched
signals between two simulations runs, RunName1 and RunName2.

Input Arguments

RunName1 — Name of run
string

Name of run to compare, specified as a string.
Data Types: char

RunName2 — Name of run
string

Name of run to compare, specified as a string.
Data Types: char

Output Arguments

diff — Difference between two runs
DataTypeWorkflow.DiffRunResult object



 compareRuns

5-23

A DataTypeWorkflow.DiffRunResult containing the results of the comparison.

Alternatives

The DataTypeWorkflow.Converter.compareRuns method offers a command-line
approach to using the Fixed-Point Tool. See fxptdlg for more information.

See Also
fxptdlg | Simulink.sdi.compareRuns

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



5 Methods — Alphabetical List

5-24

deriveMinMax
Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Derive range information for model

Syntax

converter.deriveMinMax()

Description

converter.deriveMinMax() derives the minimum and maximum values for each
block based on design minimum and maximum values.

Tips

• If any issues come up during the derivation, they can be queried using the
DataTypeWorkflow.Converter.proposalIssues method.

Alternatives

The DataTypeWorkflow.Converter.deriveMinMax method is equivalent to the

Derive min/max values for selected system button ( ) in the Fixed-Point Tool.
See fxptdlg for more information.

See Also
DataTypeWorkflow.Converter.simulateSystem | fxptdlg

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



 proposeDataTypes

5-25

proposeDataTypes

Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Propose data types for system

Syntax

converter.proposeDataTypes(RunName, propSettings)

Description

converter.proposeDataTypes(RunName, propSettings) proposes data types for
the system based on the range results stored in RunName and the settings specified in
propSettings.

Input Arguments

RunName — Name of run
string

Name of run to propose data types for, specified as a string.
Data Types: char

propSettings — Proposed data type settings
DataTypeWorkflow.ProposalSettings object

Proposed data type settings specified as a DataTypeWorkflow.ProposalSettings
object. Use this object to specify proposal settings such as the default data type for all
floating point signals.



5 Methods — Alphabetical List

5-26

Alternatives

DataTypeWorkflow.Converter.proposeDataTypes provides functionality similar to

the Fixed-Point Tool button Propose fraction lengths . For more information, see
fxptdlg.

See Also
DataTypeWorkflow.ProposalSettings |
DataTypeWorkflow.Converter.applyDataTypes

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



 results

5-27

results

Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Find results for selected system in converter object

Syntax

results = converter.results(RunName)

results = converter.results(RunName, filterFunc)

Description

results = converter.results(RunName) returns all results in the specified run.

results = converter.results(RunName, filterFunc) returns the results in the
specified run which match the criteria specified by filterFunc.

Input Arguments

RunName — Name of run
string

Name of the run to query, specified as a string.
Data Types: char

filterFunc — Function to use to filter results
function handle

Function to use to filter results, specified as a function handle with a
DataTypeWorkflow.Result object as its input.

Data Types: function_handle



5 Methods — Alphabetical List

5-28

Output Arguments

results — Filtered results
array of Result objects

Array of DataTypeWorkflow.Result objects from RunName filtered by filterFunc

Alternatives

The DataTypeWorkflow.Converter.results method offers a command-line approach
to using the Fixed-Point Tool. See fxptdlg for more information.

See Also
DataTypeWorkflow.Converter.proposalIssues |
DataTypeWorkflow.Converter.wrapOverflows |
DataTypeWorkflow.Converter.saturationOverflows

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



 proposalIssues

5-29

proposalIssues

Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Get results which have comments associated with them

Syntax

results = converter.proposalIssues(RunName)

Description

results = converter.proposalIssues(RunName) returns all results in RunName
that have associated comments. The comments field of the returned results can provide
information related to any issues found.

Input Arguments

RunName — Name of run
string

Name of run to look for comments in, specified as a string.
Data Types: char

Output Arguments

results — Results that have associated comments
DataTypeWorkflow.Result object

A DataTypeWorkflow.Result object containing all signals in RunName with
associated comments.



5 Methods — Alphabetical List

5-30

Alternatives

The DataTypeWorkflow.Converter.proposalIssues method offers a command-line
approach to using the Fixed-Point Tool. See fxptdlg for more information.

See Also
DataTypeWorkflow.Converter.results |
DataTypeWorkflow.Converter.wrapOverflows |
DataTypeWorkflow.Converter.saturationOverflows

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



 saturationOverflows

5-31

saturationOverflows
Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Get results where saturation occurred

Syntax
results = converter.saturationOverflows(RunName)

Description
results = converter.saturationOverflows(RunName) all results in RunName
that saturated during simulation.

Input Arguments
RunName — Name of run
string

Name of run to look for saturations in, specified as a string.
Data Types: char

Output Arguments
results — Results that saturated
DataTypeWorkflow.Result object

DataTypeWorkflow.Result object containing all of the signals that saturated during
the specified run.

See Also
DataTypeWorkflow.Converter.results |
DataTypeWorkflow.Converter.wrapOverflows |
DataTypeWorkflow.Converter.proposalIssues



5 Methods — Alphabetical List

5-32

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



 simulateSystem

5-33

simulateSystem
Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Simulate converter’s system

Syntax

simOut = converter.simulateSystem()

simOut = converter.simulateSystem(Name,Value)

simOut = converter.simulateSystem(ParameterStruct)

simOut = converter.simulateSystem(ConfigSet)

Description

simOut = converter.simulateSystem() simulates the converter’s selected system.

simOut = converter.simulateSystem(Name,Value) uses additional options
specified by one or more Name,Value pair arguments. This method accepts the same
Name,Value pairs as the sim function.

simOut = converter.simulateSystem(ParameterStruct) simulates the
converter’s selected system using the parameter values specified in the structure,
ParameterStruct.

simOut = converter.simulateSystem(ConfigSet) simulates the converter’s
selected system using the configuration settings specified in the model configuration set,
ConfigSet.

Note:

• The SimulationMode property must be set to normal. The Fixed-Point Designer
software does collect simulation ranges in Rapid accelerator or Hot restart modes.

• The SrcWorkspace parameter must be set to either base or current.



5 Methods — Alphabetical List

5-34

Tips
• To correspond your simulation to a specific run name, before simulation, change the

CurrentRunName property of the DataTypeWorkflow.Converter object.
• DataTypeWorkflow.Converter.simulateSystem provides functionality similar to

the sim command, except that simulateSystem preserves the model-wide data type
override and instrumentation settings of each run.

Input Arguments

ParameterStruct — Structure of parameter settings
structure

A structure containing parameter settings to be applied during simulation. For an
example, see “Simulate Model with sim Command Line Options in Structure”.
Data Types: struct

ConfigSet — Configuration set
Simulink.ConfigSet

Configuration set, specified as a Simulink.ConfigSet, containing the values of the
model parameters.

Output Arguments

simOut — Simulation output
Simulink.SimulationOutput object

Simulink.SimulationOutput object containing the simulation outputs: logged time,
states, and signals.

See Also
sim

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



 wrapOverflows

5-35

wrapOverflows

Class: DataTypeWorkflow.Converter
Package: DataTypeWorkflow

Get results where wrapping occurred

Syntax

results = converter.wrapOverflows(RunName)

Description

results = converter.wrapOverflows(RunName) returns all results in RunName
that wrapped during simulation.

Input Arguments

RunName — Name of run
string

Name of run in which to look for wrap overflows, specified as a string.
Example: converter.WrapOverflows('Run3')

Data Types: char

Output Arguments

results — Result object
DataTypeWorkflow.Result object

DataTypeWorkflow.Result object containing all of the signals that wrapped during
the specified run.



5 Methods — Alphabetical List

5-36

See Also
DataTypeWorkflow.Converter.results |
DataTypeWorkflow.Converter.saturationOverflows |
DataTypeWorkflow.Converter.proposalIssues

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”



Glossary-1

Glossary

This glossary defines terms related to fixed-point data types and numbers. These terms
may appear in some or all of the documents that describe MathWorks products that have
fixed-point support.

arithmetic shift Shift of the bits of a binary word for which the sign
bit is recycled for each bit shift to the right. A zero is
incorporated into the least significant bit of the word for
each bit shift to the left. In the absence of overflows, each
arithmetic shift to the right is equivalent to a division by
2, and each arithmetic shift to the left is equivalent to a
multiplication by 2.

See also binary point, binary word, bit, logical shift, most
significant bit

bias Part of the numerical representation used to interpret a
fixed-point number. Along with the slope, the bias forms
the scaling of the number. Fixed-point numbers can be
represented as

real world value slope stored integer bias- = ¥ +( )

where the slope can be expressed as

slope fractional slope exponent
= ¥2

See also fixed-point representation, fractional slope,
integer, scaling, slope, [Slope Bias]

binary number Value represented in a system of numbers that has two as
its base and that uses 1's and 0's (bits) for its notation.

See also bit

binary point Symbol in the shape of a period that separates the integer
and fractional parts of a binary number. Bits to the left of
the binary point are integer bits and/or sign bits, and bits
to the right of the binary point are fractional bits.

See also binary number, bit, fraction, integer, radix point



Glossary

Glossary-2

binary point-only scaling Scaling of a binary number that results from shifting
the binary point of the number right or left, and which
therefore can only occur by powers of two.

See also binary number, binary point, scaling

binary word Fixed-length sequence of bits (1's and 0's). In digital
hardware, numbers are stored in binary words. The way
in which hardware components or software functions
interpret this sequence of 1's and 0's is described by a
data type.

See also bit, data type, word

bit Smallest unit of information in computer software or
hardware. A bit can have the value 0 or 1.

ceiling (round toward) Rounding mode that rounds to the closest representable
number in the direction of positive infinity. This is
equivalent to the ceil mode in Fixed-Point Designer
software.

See also convergent rounding, floor (round toward),
nearest (round toward), rounding, truncation, zero (round
toward)

contiguous binary point Binary point that occurs within the word length of a
data type. For example, if a data type has four bits, its
contiguous binary point must be understood to occur at
one of the following five positions:

.

.

.

.

.

0000

0 000

00 00

000 0

0000

See also data type, noncontiguous binary point, word
length



 Glossary

Glossary-3

convergent rounding Rounding mode that rounds to the nearest allowable
quantized value. Numbers that are exactly halfway
between the two nearest allowable quantized values
are rounded up only if the least significant bit (after
rounding) would be set to 0.

See also ceiling (round toward), floor (round toward),
nearest (round toward), rounding, truncation, zero (round
toward)

data type Set of characteristics that define a group of values. A
fixed-point data type is defined by its word length, its
fraction length, and whether it is signed or unsigned. A
floating-point data type is defined by its word length and
whether it is signed or unsigned.

See also fixed-point representation, floating-point
representation, fraction length, signedness, word length

data type override Parameter in the Fixed-Point Tool that allows you to set
the output data type and scaling of fixed-point blocks on a
system or subsystem level.

See also data type, scaling

exponent Part of the numerical representation used to express a
floating-point or fixed-point number.

1. Floating-point numbers are typically represented as

real -world value mantissa exponent
= ¥2

2. Fixed-point numbers can be represented as

real world value slope stored integer bias- = ¥ +( )

where the slope can be expressed as

slope fractional slope exponent
= ¥2



Glossary

Glossary-4

The exponent of a fixed-point number is equal to the
negative of the fraction length:

exponent fraction length= - ¥1

See also bias, fixed-point representation, floating-point
representation, fraction length, fractional slope, integer,
mantissa, slope

fixed-point representation Method for representing numerical values and data types
that have a set range and precision.

1. Fixed-point numbers can be represented as

real world value slope stored integer bias- = ¥ +( )

where the slope can be expressed as

slope fractional slope exponent
= ¥2

The slope and the bias together represent the scaling of
the fixed-point number.

2. Fixed-point data types can be defined by their word
length, their fraction length, and whether they are signed
or unsigned.

See also bias, data type, exponent, fraction length,
fractional slope, integer, precision, range, scaling, slope,
word length

floating-point representation Method for representing numerical values and data types
that can have changing range and precision.

1. Floating-point numbers can be represented as

real -world value mantissa exponent
= ¥2



 Glossary

Glossary-5

2. Floating-point data types are defined by their word
length.

See also data type, exponent, mantissa, precision, range,
word length

floor (round toward) Rounding mode that rounds to the closest representable
number in the direction of negative infinity.

See also ceiling (round toward), convergent rounding,
nearest (round toward), rounding, truncation, zero (round
toward)

fraction Part of a fixed-point number represented by the bits to the
right of the binary point. The fraction represents numbers
that are less than one.

See also binary point, bit, fixed-point representation

fraction length Number of bits to the right of the binary point in a fixed-
point representation of a number.

See also binary point, bit, fixed-point representation,
fraction

fractional slope Part of the numerical representation used to express
a fixed-point number. Fixed-point numbers can be
represented as

real world value slope stored integer bias- = ¥ +( )

where the slope can be expressed as

slope fractional slope exponent
= ¥2

The term slope adjustment is sometimes used as a
synonym for fractional slope.

See also bias, exponent, fixed-point representation,
integer, slope



Glossary

Glossary-6

full range The broadest range available for a data type. From –
∞ to ∞ for floating-point types. For integer types, the
representable range is the range from the smallest to
largest integer value (finite) the type can represent. For
example, from -128 to 127 for a signed 8–bit integer. Also
known as representable range.

guard bits Extra bits in either a hardware register or software
simulation that are added to the high end of a binary
word to ensure that no information is lost in case of
overflow.

See also binary word, bit, overflow

incorrect range A range that is too restrictive and does not include values
that can actually occur in the model element. A range that
is too broad is not considered incorrect because it will not
lead to overflow.

See also range analysis

integer 1. Part of a fixed-point number represented by the bits
to the left of the binary point. The integer represents
numbers that are greater than or equal to one.

2. Also called the "stored integer." The raw binary
number, in which the binary point is assumed to be at the
far right of the word. The integer is part of the numerical
representation used to express a fixed-point number.
Fixed-point numbers can be represented as

real -world value stored integerfraction length
= ¥

-
2

or

real world value slope stored integer bias- = ¥ +( )

where the slope can be expressed as

slope fractional slope exponent
= ¥2



 Glossary

Glossary-7

See also bias, fixed-point representation, fractional slope,
integer, real-world value, slope

integer length Number of bits to the left of the binary point in a fixed-
point representation of a number.

See also binary point, bit, fixed-point representation,
fraction length, integer

least significant bit (LSB) Bit in a binary word that can represent the smallest
value. The LSB is the rightmost bit in a big-endian-
ordered binary word. The weight of the LSB is related to
the fraction length according to

weight of  LSB fraction length
=

-

2

See also big-endian, binary word, bit, most significant bit

logical shift Shift of the bits of a binary word, for which a zero is
incorporated into the most significant bit for each bit shift
to the right and into the least significant bit for each bit
shift to the left.

See also arithmetic shift, binary point, binary word, bit,
most significant bit

mantissa Part of the numerical representation used to express
a floating-point number. Floating-point numbers are
typically represented as

real -world value mantissa exponent
= ¥2

See also exponent, floating-point representation

model element Entities in a model that range analysis software tracks,
for example, blocks, signals, parameters, block internal
data (such as accumulators, products).

See also range analysis



Glossary

Glossary-8

most significant bit (MSB) Bit in a binary word that can represent the largest value.
The MSB is the leftmost bit in a big-endian-ordered
binary word.

See also binary word, bit, least significant bit

nearest (round toward) Rounding mode that rounds to the closest representable
number, with the exact midpoint rounded to the closest
representable number in the direction of positive infinity.
This is equivalent to the nearest mode in Fixed-Point
Designer software.

See also ceiling (round toward), convergent rounding, floor
(round toward), rounding, truncation, zero (round toward)

noncontiguous binary point Binary point that is understood to fall outside the word
length of a data type. For example, the binary point for
the following 4-bit word is understood to occur two bits to
the right of the word length,

0000 .

thereby giving the bits of the word the following potential
values:

2 2 2 2
5 4 3 2

.

See also binary point, data type, word length

one's complement
representation

Representation of signed fixed-point numbers. Negating
a binary number in one's complement requires a bitwise
complement. That is, all 0's are flipped to 1's and all 1's
are flipped to 0's. In one's complement notation there
are two ways to represent zero. A binary word of all 0's
represents "positive" zero, while a binary word of all 1's
represents "negative" zero.

See also binary number, binary word, sign/magnitude
representation, signed fixed-point, two's complement
representation



 Glossary

Glossary-9

overflow Situation that occurs when the magnitude of a calculation
result is too large for the range of the data type being
used. In many cases you can choose to either saturate or
wrap overflows.

See also saturation, wrapping

padding Extending the least significant bit of a binary word with
one or more zeros.

See also least significant bit

precision 1. Measure of the smallest numerical interval that a fixed-
point data type and scaling can represent, determined
by the value of the number's least significant bit. The
precision is given by the slope, or the number of fractional
bits. The term resolution is sometimes used as a synonym
for this definition.

2. Measure of the difference between a real-world
numerical value and the value of its quantized
representation. This is sometimes called quantization
error or quantization noise.

See also data type, fraction, least significant bit,
quantization, quantization error, range, slope

Q format Representation used by Texas Instruments™ to encode
signed two's complement fixed-point data types. This
fixed-point notation takes the form

Qm n.

where

• Q indicates that the number is in Q format.
• m is the number of bits used to designate the two's

complement integer part of the number.
• n is the number of bits used to designate the two's

complement fractional part of the number, or the
number of bits to the right of the binary point.



Glossary

Glossary-10

In Q format notation, the most significant bit is assumed
to be the sign bit.

See also binary point, bit, data type, fixed-point
representation, fraction, integer, two's complement

quantization Representation of a value by a data type that has too few
bits to represent it exactly.

See also bit, data type, quantization error

quantization error Error introduced when a value is represented by a data
type that has too few bits to represent it exactly, or when
a value is converted from one data type to a shorter data
type. Quantization error is also called quantization noise.

See also bit, data type, quantization

radix point Symbol in the shape of a period that separates the integer
and fractional parts of a number in any base system. Bits
to the left of the radix point are integer and/or sign bits,
and bits to the right of the radix point are fraction bits.

See also binary point, bit, fraction, integer, sign bit

range Span of numbers that a certain data type can represent.

See also data type, full range, precision, representable
range

range analysis Static analysis of model to derive minimum and
maximum range values for elements in the model. The
software statically analyzes the ranges of the individual
computations in the model based on specified design
ranges, inputs, and the semantics of the calculation.

real-world value Stored integer value with fixed-point scaling applied.
Fixed-point numbers can be represented as

real -world value stored integerfraction length
= ¥

-
2



 Glossary

Glossary-11

or

real world value slope stored integer bias- = ¥ +( )

where the slope can be expressed as

slope fractional slope exponent
= ¥2

See also integer

representable range The broadest range available for a data type. From –
∞ to ∞ for floating-point types. For integer types, the
representable range is the range from the smallest to
largest integer value (finite) the type can represent. For
example, from -128 to 127 for a signed 8–bit integer. Also
known as full range.

resolution See precision

rounding Limiting the number of bits required to express a number.
One or more least significant bits are dropped, resulting
in a loss of precision. Rounding is necessary when a
value cannot be expressed exactly by the number of bits
designated to represent it.

See also bit, ceiling (round toward), convergent rounding,
floor (round toward), least significant bit, nearest (round
toward), precision, truncation, zero (round toward)

saturation Method of handling numeric overflow that represents
positive overflows as the largest positive number in the
range of the data type being used, and negative overflows
as the largest negative number in the range.

See also overflow, wrapping

scaled double A double data type that retains fixed-point scaling
information. For example, in Simulink and Fixed-Point
Designer software you can use data type override to



Glossary

Glossary-12

convert your fixed-point data types to scaled doubles.
You can then simulate to determine the ideal floating-
point behavior of your system. After you gather that
information you can turn data type override off to return
to fixed-point data types, and your quantities still have
their original scaling information because it was held in
the scaled double data types.

scaling 1. Format used for a fixed-point number of a given word
length and signedness. The slope and bias together form
the scaling of a fixed-point number.

2. Changing the slope and/or bias of a fixed-point number
without changing the stored integer.

See also bias, fixed-point representation, integer, slope

shift Movement of the bits of a binary word either toward the
most significant bit ("to the left") or toward the least
significant bit ("to the right"). Shifts to the right can be
either logical, where the spaces emptied at the front of the
word with each shift are filled in with zeros, or arithmetic,
where the word is sign extended as it is shifted to the
right.

See also arithmetic shift, logical shift, sign extension

sign bit Bit (or bits) in a signed binary number that indicates
whether the number is positive or negative.

See also binary number, bit

sign extension Addition of bits that have the value of the most significant
bit to the high end of a two's complement number. Sign
extension does not change the value of the binary number.

See also binary number, guard bits, most significant bit,
two's complement representation, word

sign/magnitude
representation

Representation of signed fixed-point or floating-point
numbers. In sign/magnitude representation, one bit of a
binary word is always the dedicated sign bit, while the



 Glossary

Glossary-13

remaining bits of the word encode the magnitude of the
number. Negation using sign/magnitude representation
consists of flipping the sign bit from 0 (positive) to 1
(negative), or from 1 to 0.

See also binary word, bit, fixed-point representation,
floating-point representation, one's complement
representation, sign bit, signed fixed-point, signedness,
two's complement representation

signed fixed-point Fixed-point number or data type that can represent both
positive and negative numbers.

See also data type, fixed-point representation, signedness,
unsigned fixed-point

signedness The signedness of a number or data type can be signed or
unsigned. Signed numbers and data types can represent
both positive and negative values, whereas unsigned
numbers and data types can only represent values that
are greater than or equal to zero.

See also data type, sign bit, sign/magnitude
representation, signed fixed-point, unsigned fixed-point

slope Part of the numerical representation used to express a
fixed-point number. Along with the bias, the slope forms
the scaling of a fixed-point number. Fixed-point numbers
can be represented as

real world value slope stored integer bias- = ¥ +( )

where the slope can be expressed as

slope fractional slope exponent
= ¥2

See also bias, fixed-point representation, fractional slope,
integer, scaling, [Slope Bias]

slope adjustment See fractional slope



Glossary

Glossary-14

[Slope Bias] Representation used to define the scaling of a fixed-point
number.

See also bias, scaling, slope

stored integer See integer

trivial scaling Scaling that results in the real-world value of a number
being simply equal to its stored integer value:

real -world value stored integer=

In [Slope Bias] representation, fixed-point numbers can be
represented as

real world value slope stored integer bias- = ¥ +( )

In the trivial case, slope = 1 and bias = 0.

In terms of binary point-only scaling, the binary point is
to the right of the least significant bit for trivial scaling,
meaning that the fraction length is zero:

real -world value stored integer stored ifraction length
= ¥ =

-
2 nnteger ¥2

0

Scaling is always trivial for pure integers, such as int8,
and also for the true floating-point types single and
double.

See also bias, binary point, binary point-only scaling,
fixed-point representation, fraction length, integer, least
significant bit, scaling, slope, [Slope Bias]

truncation Rounding mode that drops one or more least significant
bits from a number.

See also ceiling (round toward), convergent rounding, floor
(round toward), nearest (round toward), rounding, zero
(round toward)



 Glossary

Glossary-15

two's complement
representation

Common representation of signed fixed-point numbers.
Negation using signed two's complement representation
consists of a translation into one's complement followed by
the binary addition of a one.

See also binary word, one's complement representation,
sign/magnitude representation, signed fixed-point

unsigned fixed-point Fixed-point number or data type that can only represent
numbers greater than or equal to zero.

See also data type, fixed-point representation, signed
fixed-point, signedness

word Fixed-length sequence of binary digits (1's and 0's). In
digital hardware, numbers are stored in words. The way
hardware components or software functions interpret this
sequence of 1's and 0's is described by a data type.

See also binary word, data type

word length Number of bits in a binary word or data type.

See also binary word, bit, data type

wrapping Method of handling overflow. Wrapping uses modulo
arithmetic to cast a number that falls outside of the
representable range the data type being used back into
the representable range.

See also data type, overflow, range, saturation

zero (round toward) Rounding mode that rounds to the closest representable
number in the direction of zero. This is equivalent to the
fix mode in Fixed-Point Designer software.

See also ceiling (round toward), convergent rounding,
floor (round toward), nearest (round toward), rounding,
truncation





A

Selected Bibliography

[1] Burrus, C.S., J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H.W.
Schuessler, Computer-Based Exercises for Signal Processing Using MATLAB,
Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[2] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems,
Second Edition, Addison-Wesley Publishing Company, Reading, Massachusetts,
1990.

[3] Handbook For Digital Signal Processing, edited by S.K. Mitra and J.F. Kaiser, John
Wiley & Sons, Inc., New York, 1993.

[4] Hanselmann, H., “Implementation of Digital Controllers — A Survey,” Automatica,
Vol. 23, No. 1, pp. 7-32, 1987.

[5] Jackson, L.B., Digital Filters and Signal Processing, Second Edition, Kluwer
Academic Publishers, Seventh Printing, Norwell, Massachusetts, 1993.

[6] Middleton, R. and G. Goodwin, Digital Control and Estimation — A Unified
Approach, Prentice Hall, Englewood Cliffs, New Jersey. 1990.

[7] Moler, C., “Floating points: IEEE Standard unifies arithmetic model,” Cleve's
Corner, The MathWorks, Inc., 1996. You can find this article at http://
www.mathworks.com/company/newsletters/news_notes/clevescorner/index.html.

[8] Ogata, K., Discrete-Time Control Systems, Second Edition, Prentice Hall, Englewood
Cliffs, New Jersey, 1995.

[9] Roberts, R.A. and C.T. Mullis, Digital Signal Processing, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1987.

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/index.html
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/index.html



